Equazioni 2° grado a due incognite

Messaggioda xshell » 28/12/2008, 18:55

Buongiorno.

Parlando con un mio amico è sorto il problema: come si risolvono le equazioni di secondo grado a due incognite? (Sicuramente starete pensando: ma non avevate niente di meglio di cui parlare? Beh, in effetti...). Comunque, poiché molto probabilmente la formuletta per risolvere le equazioni di secondo grado a una incognita non è più utile, esiste un metodo generale per risolverle?

Grazie.
xshell
New Member
New Member
 
Messaggio: 67 di 89
Iscritto il: 20/06/2008, 18:34

Messaggioda G.D. » 28/12/2008, 19:36

Le equazioni di secondo grado in due incognite si comportano esattamente come le equazioni lineari in due incognite, i.e. fissata la $y$ risolvi rispetto a $x$ o viceversa.
Le equazioni di secondo grado in due incognite rappresentano le coniche, così come le equazioni lineari in due incognite rappresentano le rette: questo dovrebbe farti capire il perché della mia precendete risposta.
"Everybody lies" (Dr. House)
"La morte sorride a tutti: un uomo non può fare altro che sorriderle di rimando" (Marco Aurelio)
"Eliminato l'impossibile, ciò che resta, per improbabile che sia, deve essere la verità" (Sherlock Holmes)
Avatar utente
G.D.
Cannot live without
Cannot live without
 
Messaggio: 1799 di 4551
Iscritto il: 11/05/2007, 23:00

Messaggioda xshell » 28/12/2008, 19:47

Sì, in effetti rappresentano una parabola... ma per risolverle? Assegno valori casuali alla X? Perché mi sembra che le soluzioni siano infinite...
xshell
New Member
New Member
 
Messaggio: 68 di 89
Iscritto il: 20/06/2008, 18:34

Messaggioda @melia » 28/12/2008, 19:52

Le equazioni di primo grado in due incognite ammettono infinite soluzioni che, nel piano, graficamente rappresentano da una retta.
Le equazioni di secondo grado in due incognite sono un po' più complicate, alcune non ammettono soluzioni reali come $x^2+xy+y^2+4=0$, altre ammettono solo una soluzione $x^2+y^2=0$, altre sono semplicemente delle rette cammuffate come $x^2+4xy+4y^2-9=0$ che non è altro che il prodotto tra due rette $(x+2y+3)*(x+2y-3)=0$.
Le equazioni di secondo grado in due incognite hanno come equazione generale $ax^2+bxy+cy^2+dx+ey+f=0$ e si chiamano coniche, quelle che ho descritto sopra sono delle coniche degeneri, le altre coniche sono parabola, iperbole, ellisse e circonferenza che è un caso particolare di ellisse.
Nel sito trovi diverse cose dedicate alle coniche, compresa una bella animazione sul come ottenerle tramite le sezioni di un cono
http://www.matematicamente.it/didattica ... 804083031/
Avatar utente
@melia
Moderatore
Moderatore
 
Messaggio: 517 di 7459
Iscritto il: 16/06/2008, 19:02
Località: Padova

Messaggioda G.D. » 28/12/2008, 19:52

Rappresentano delle coniche, non necessariamente le coniche sono parabole: potrebbero essere ellisse, iperbole, circonferenze oltre che parabole. Tutto dipende dal discriminante della quadratica (l'espressione con $x$ e $y$).
Le soluzioni sono infinite: tutte le coppie $(x,y)$ che rappresentano punti delle conica sono soluzione delle singola equazione.
Se vuoi un numero finito di soluzioni devi mettere a sistema due equazioni: devi cioè trovare le intersezioni tra due coniche.
"Everybody lies" (Dr. House)
"La morte sorride a tutti: un uomo non può fare altro che sorriderle di rimando" (Marco Aurelio)
"Eliminato l'impossibile, ciò che resta, per improbabile che sia, deve essere la verità" (Sherlock Holmes)
Avatar utente
G.D.
Cannot live without
Cannot live without
 
Messaggio: 1800 di 4551
Iscritto il: 11/05/2007, 23:00

Messaggioda xshell » 28/12/2008, 20:03

Sì, ok, questo l'ho capito... prendi un cono ed un coltello... lo tagli in modo parallelo alla base ed ottieni una circonferenza, lo tagli in modo impreciso ed ottieni una ellisse e se tagli tutto, compresa una parte di base ottieni una parabola...

Le equazioni di secondo grado dovrabbero avere sempre delle soluzioni (o nel campo dei reali o dei complessi)... il problema è sorto quando mi stato chiesto... "come si risolvono tali equazioni?"... Io ho risposto: "assegna dei valori alla variabile indipendente e trovi dei valori della variabile dipendente e successivamente disegna i tuoi punti sul piano e uniscili"... ma la risposta mi è sembrata piuttosto incompleta e non molto corretta...

Le equ.ni di secondo grado in due incognite sono "sempre" delle coniche?
xshell
New Member
New Member
 
Messaggio: 69 di 89
Iscritto il: 20/06/2008, 18:34

Messaggioda @melia » 28/12/2008, 20:08

xshell ha scritto:Le equ.ni di secondo grado in due incognite sono "sempre" delle coniche?

vedi la mia risposta precedente
Avatar utente
@melia
Moderatore
Moderatore
 
Messaggio: 520 di 7459
Iscritto il: 16/06/2008, 19:02
Località: Padova

Messaggioda xshell » 28/12/2008, 20:17

Grazie.
xshell
New Member
New Member
 
Messaggio: 70 di 89
Iscritto il: 20/06/2008, 18:34

Messaggioda franced » 29/12/2008, 00:24

@melia ha scritto:Le equazioni di primo grado in due incognite ammettono infinite soluzioni che, nel piano, graficamente rappresentano da una retta.
Le equazioni di secondo grado in due incognite sono un po' più complicate, alcune non ammettono soluzioni reali come $x^2+xy+y^2+4=0$, altre ammettono solo una soluzione $x^2+y^2=0$, altre sono semplicemente delle rette cammuffate come $x^2+4xy+4y^2-9=0$ che non è altro che il prodotto tra due rette $(x+2y+3)*(x+2y-3)=0$.
Le equazioni di secondo grado in due incognite hanno come equazione generale $ax^2+bxy+cy^2+dx+ey+f=0$ e si chiamano coniche, quelle che ho descritto sopra sono delle coniche degeneri, le altre coniche sono parabola, iperbole, ellisse e circonferenza che è un caso particolare di ellisse.
Nel sito trovi diverse cose dedicate alle coniche, compresa una bella animazione sul come ottenerle tramite le sezioni di un cono
http://www.matematicamente.it/didattica ... 804083031/


La conica $x^2+xy+y^2+4=0$ è non degenere.
E' un'ellisse immaginaria.
Francesco Daddi

Visita il mio sito:

http://www.webalice.it/francesco.daddi/ ... atica.html
franced
Cannot live without
Cannot live without
 
Messaggio: 1380 di 3519
Iscritto il: 26/02/2007, 18:39
Località: Pontedera (PI)

Messaggioda franced » 29/12/2008, 00:27

Il fatto che una conica non abbia punti reali non significa che sia per forza degenere.

Una conica è degenere quando la matrice della conica è singolare.
Francesco Daddi

Visita il mio sito:

http://www.webalice.it/francesco.daddi/ ... atica.html
franced
Cannot live without
Cannot live without
 
Messaggio: 1381 di 3519
Iscritto il: 26/02/2007, 18:39
Località: Pontedera (PI)

Prossimo

Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite