Minimo comune multiplo tra due frazioni

Messaggioda miticocampo » 01/05/2013, 15:36

Ciao a tutti,
in uno dei primi esercizi del mio eserciziario di analisi 1 è proposto un esercizio sui numeri razionali

viene chiesto di calcolare il minimo comune multiplo tra le frazioni tra 17/19 e 3/7

voi sapete la formula generale per risolvere questo tipo di esercizi?
miticocampo
Starting Member
Starting Member
 
Messaggio: 6 di 6
Iscritto il: 28/12/2011, 22:25
Google Chrome 26.0.141 Google Chrome 26.0.141
Windows NT 64 bits Windows NT 64 bits

Re: Minimo comune multiplo tra due frazioni

Messaggioda Zero87 » 01/05/2013, 15:57

Non ho mai incontrato un esercizio simile e devo dire che anche in questo non si smette mai di imparare. ;-)
Anche perché sapevo che il mcm andava fatto (ed era definito) tra interi.

Tuttavia, la logica - quindi non so se questo è il metodo ufficiale per risolvere questi esercizi! - mi porta a supporre che prima di tutto si prende il mcm tra i denominatori in modo da scrivere le frazioni con la stessa base (e il mcm al denominatore, un po' come quando si fa la somma), poi si vede il mcm tra i numeratori così ottenuti.

Cioè, per esempio (non risolvo il tuo ma scrivo questo per far capire quello che ho scritto sopra), se dovessi calcolare il mcm tra $2/9$ e $5/12$ prima di tutto li trasformerei entrambi in $8/36$ e $15/36$, in seguito vedrei che il mcm tra $15$ e $8$ è $120$ e otterrei che il mcm tra $2/9$ e $5/12$ è $120/36=10/3$.

Ora, tanto per dare un senso a quello che ho detto, ho che
$10/3 : 2/9 = 10/3 \cdot 9/2 =15$
$10/3 : 5/12 = 10/3 \cdot 12/5 =8$

Cioè dividendo il mcm trovato per i numeri di partenza ottengo due interi (buon segno :lol: ) e inoltre questi due interi sono anche primi tra loro il ché mi dà ulteriore fiducia.

Comunque ripeto: vado a logica anche perché sapevo che il mcm era definito solo per interi. :smt039
<<Se mettessero qualche fonte più precisa e su base corretta [...], allora sarebbe un bel programma. Ma che citano ed intervistino ad cazzum ogni umano che si sveglia la mattina, non è paragone di serietà.>>
Hamming_burst su un programma televisivo di (dubbia) divulgazione scientifica.
Avatar utente
Zero87
Cannot live without
Cannot live without
 
Messaggio: 1974 di 4166
Iscritto il: 12/01/2008, 23:05
Località: Marche (MC-AP/AN)
Firefox 17.0 Firefox 17.0
Windows Seven Windows Seven

Re: Minimo comune multiplo tra due frazioni

Messaggioda vivians » 01/05/2013, 16:02

nel libro di anali 1???
comunque si dovrebbero scomporre in fattori primi i denominatori delle frazioni e dalla scomposizione prendi i fattori comuni con esponente maggiore,li moltiplichi e trovi il minimo comune multiplo.
nel tuo caso 7 e 19 sono numeri primi quindi non li puoi scomporre in fattori primi e il
mcm=7*19=133
ma se avessi avuto 8 e 36
$ 8=2^3$
$36=2^2*3^2 $

quindi mcm= $ 3^2*2^3=72 $

era questo quello che volevi sapere?..perchè mi sembra strano.. :D
vivians
Starting Member
Starting Member
 
Messaggio: 30 di 35
Iscritto il: 27/11/2012, 13:18
Firefox 20.0 Firefox 20.0
Windows Seven 64 bits Windows Seven 64 bits

Re: Minimo comune multiplo tra due frazioni

Messaggioda Quinzio » 01/05/2013, 16:03

Non vorrei dire cavolate, però a sensazione se hai due frazioni

$f_1=(n_1)/(d_1)$ e $f_2=(n_2)/(d_2)$

hai che $mcm(f_1,f_2)=(mcm(n_1,n_2))/(mcd(d_1,d_2))$

mcm=minimo comune multiplo
mcd=massimo comun divisore
Quinzio
Cannot live without
Cannot live without
 
Messaggio: 2527 di 3800
Iscritto il: 24/08/2010, 06:50
Opera 12.15 Opera 12.15
Windows XP Windows XP

Re: Minimo comune multiplo tra due frazioni

Messaggioda Cisco112 » 07/08/2014, 14:20

Zero87 ha scritto:Non ho mai incontrato un esercizio simile e devo dire che anche in questo non si smette mai di imparare. ;-)
Anche perché sapevo che il mcm andava fatto (ed era definito) tra interi.

Tuttavia, la logica - quindi non so se questo è il metodo ufficiale per risolvere questi esercizi! - mi porta a supporre che prima di tutto si prende il mcm tra i denominatori in modo da scrivere le frazioni con la stessa base (e il mcm al denominatore, un po' come quando si fa la somma), poi si vede il mcm tra i numeratori così ottenuti.

Cioè, per esempio (non risolvo il tuo ma scrivo questo per far capire quello che ho scritto sopra), se dovessi calcolare il mcm tra $2/9$ e $5/12$ prima di tutto li trasformerei entrambi in $8/36$ e $15/36$, in seguito vedrei che il mcm tra $15$ e $8$ è $120$ e otterrei che il mcm tra $2/9$ e $5/12$ è $120/36=10/3$.

Ora, tanto per dare un senso a quello che ho detto, ho che
$10/3 : 2/9 = 10/3 \cdot 9/2 =15$
$10/3 : 5/12 = 10/3 \cdot 12/5 =8$

Cioè dividendo il mcm trovato per i numeri di partenza ottengo due interi (buon segno :lol: ) e inoltre questi due interi sono anche primi tra loro il ché mi dà ulteriore fiducia.

Comunque ripeto: vado a logica anche perché sapevo che il mcm era definito solo per interi. :smt039


Riprendo un argomento trattato tempo fa.. come mai hai seguito questa logica?
Cisco112
Starting Member
Starting Member
 
Messaggio: 11 di 11
Iscritto il: 10/06/2012, 10:39
Firefox 31.0 Firefox 31.0
Windows Seven 64 bits Windows Seven 64 bits

Re: Minimo comune multiplo tra due frazioni

Messaggioda Zero87 » 08/08/2014, 14:13

E' difficile rispondere dopo un anno, specie pensando che all'epoca ero neolaureato mentre ora sono 5 mesi e passa che lavoro e sto dimenticando tutto quel (poco) che sapevo di matematica.

Suppongo che avevo seguito quella logica per due motivi:
- rapportarsi allo stesso denominatore serve per avere una base comune da cui partire;
- una volta che ho i numeri espressi con la stessa base comune, posso trovare il multiplo più piccolo comune a entrambi.
Non so come dirlo meglio ma il primo passaggio serve più che altro per semplificare il secondo. Solo che continuo a pensare che una cosa del genere valesse solo per gli interi.
<<Se mettessero qualche fonte più precisa e su base corretta [...], allora sarebbe un bel programma. Ma che citano ed intervistino ad cazzum ogni umano che si sveglia la mattina, non è paragone di serietà.>>
Hamming_burst su un programma televisivo di (dubbia) divulgazione scientifica.
Avatar utente
Zero87
Cannot live without
Cannot live without
 
Messaggio: 3966 di 4166
Iscritto il: 12/01/2008, 23:05
Località: Marche (MC-AP/AN)
Google Chrome 36.0.198 Google Chrome 36.0.198
Windows 8.1 64 bits Windows 8.1 64 bits

Re: Minimo comune multiplo tra due frazioni

Messaggioda dissonance » 09/08/2014, 00:28

Io sono d'accordo con Zero87 sul fatto che il minimo comune multiplo si dovrebbe definire solo per coppie di interi (o elementi di qualche struttura algebrica simile). In un campo tutti gli elementi (tranne lo zero) sono multipli di tutti gli altri, quindi il "minimo comune multiplo" di due numeri razionali non sarebbe nient'altro che il più piccolo in valore assoluto. Chiaramente uno può tranquillamente estendere il concetto alle frazioni o a quello che vuole, però prima dovrebbe specificare bene la definizione.
Avatar utente
dissonance
Cannot live without
Cannot live without
 
Messaggio: 11167 di 11373
Iscritto il: 24/05/2008, 19:39
Località: Nomade
Firefox 31.0 Firefox 31.0
Windows Seven 64 bits Windows Seven 64 bits


Torna a Analisi Matematica

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti