Manuali

Numeri complessi

articoli74.jpg1 Dai numeri naturali ai numeri complessi. 1.1 Introduzione. 1.2 Richiami sugli insiemi numerici. 1.3 Numeri immaginari. 1.4 Numeri complessi. 1.5 Forma cartesiana dei numeri complessi. 2 Operazioni con i numeri complessi (forma cartesiana). 2.1 Premessa. 2.2 Somma. 2.3 Prodotto. 2.4 Reciproco. 2.5 Rapporto. 2.6 Potenza. 3 Rappresentazione geometrica dei numeri complessi. 3.1 Piano di Argand-Gauss. 3.2 Forma trigonometrica dei numeri complessi. 4 Operazioni con i numeri complessi (forma trigonometrica). 4.1 Prodotto. 4.2 Reciproco. 4.3 Rapporto. 4.4 Potenza. 5 Radici n-esime di un numero complesso. 5.1 Definizione e calcolo. 5.2 Rappresentazione geometrica delle radici di un numero complesso. 5.3 Radici dell’unità. 6 Forma esponenziale dei numeri complessi. 6.1 Formule di Eulero. 6.2 Giustificazione della formula di Eulero. 6.3 Operazioni con i numeri complessi (forma esponenziale). 6.4 Tabella riassuntiva delle operazioni. 7 Equazioni e disequazioni nel campo complesso. 7.1 Teorema fondamentale dell’Algebra. 7.2 Equazioni algebriche in C. 8 Funzioni nel campo complesso (cenni). 8.1 Funzioni esponenziale e logaritmo in C. 8.2 Funzioni trigonometriche in C. 9 Applicazioni dei numeri complessi. 9.1 Applicazioni tecniche.

 


download  Complementi di Algebra, Numeri Complessi 
Scarica l'ebook sui numeri complessi

 
Valutazione attuale:  / 14
ScarsoOttimo 

Commenti   

 
0 #10 Lapo 2013-11-14 21:58
Citazione Antonio Bernardo:
ora dovrebbe essere possibile scaricare il pdf


Perfetto.
Grazie mille, mi sarà sicuramente utile.
Citazione
 
 
+1 #9 Antonio Bernardo 2013-11-14 07:58
ora dovrebbe essere possibile scaricare il pdf
Citazione
 
 
0 #8 Lapo 2013-11-13 18:44
Salve
vorrei sapere se è ancora possibile scaricare il file PDF del volume
Numeri complessi AA. VV.
Se si da quale pagina ?
Infatti, come vedo da altri precedenti commenti, non è visibile alcun link sulla pagina web relativa a questo volume.
Grazie in anticipo
Citazione
 
 
0 #7 LS 2013-10-31 18:39
Citazione Lorenzo Demedici:
salve
domanda ma questo volume
Numeri complessi
9 Gen. 2010
di AA. VV.
NON è scaricabile?
Almeno io non riesco a trovare il link pr il pdf nella pagina


Ecco bravo!
Come posso scaricare il pdf sui Numeri Complessi ?
Diversamente dagli altri volumi non c'è il link, appunto
Citazione
 
 
+2 #6 Lorenzo Demedici 2013-10-25 09:03
salve
domanda ma questo volume
Numeri complessi
9 Gen. 2010
di AA. VV.
NON è scaricabile?
Almeno io non riesco a trovare il link pr il pdf nella pagina
Citazione
 
 
0 #5 glauko t 2013-05-30 11:50
ottimo
Citazione
 
 
-1 #4 Attilio Scifoni 2010-03-11 10:41
VI AVEVO DETTO DI PUBBLICARE IL MIO COMMENTO C O M P L E T O , MA INVECE E' STATO COME AL SOLITO PUBBLICATO TAGLIATO NELLA PARTE CENTRALE...
FORSE CHE UN COMMENTO TROPPO LUNGO VIENE AUTOMATICAMENTE TAGLIATO?
SE E' COSI' POTREI DIVIDERLO IN DUE COMMENTI PIU' BREVI...
Citazione
 
 
-1 #3 Attilio Scifoni 2010-02-28 10:14
VI INVIO NUOVAMENTE IL MIO COMMENTO C O M P L E T O.
COME HO DETTO AD ANTONIO, SUGGERISCO DI CANCELLARE
GLI ULTIMI DUE MIEI COMMENTI PUBBLICATI INCOMPLETI
E DI SOSTITUIRLI CON QUESTO COMMENTO C O M P L E T O :


A pag.16, alla tabella 6.4 si potrebbero aggiungere la forma trigonometrica
e esponenziale della somma,cioè :

FORMA TRIGONOMETRICA:
R1*(cosT1+i*sin T1) + R2*(cosT2+i*sin T2) = R*(cosT+i*senT) ove
R = SQR[ (R1^2 + R2^2 + 2*R1*R2 *cos(T1-T2) ] e
T = arctan[ (R1*sinT1 + R2*sinT2) / (R1*cosT1 + R2*cosT2) ]
(+P se R1*cosT1 + R2*cosT2 ro
T la lettera greca theta
SQR la radice quadrata
* il prodotto
^ la potenza
exp l\'esponenziale
P il valore pigreco = 3,14159...
Citazione
 
 
-1 #2 Attilio Scifoni 2010-02-17 05:47
RISCRIVO IL MIO COMMENTO PRECEDENTE IN CUI E' STATA PER ERRORE TAGLIATA UNA PARTE:

A pag.16, alla tabella 6.4 si potrebbero aggiungere la forma trigonometrica e esponenziale della somma,cioè :

FORMA TRIGONOMETRICA:
R1*(cosT1+i*sin T1) + R2*(cosT1+i*sin T2) = R*cosT ove
R = SQR (R1^2 + R2^2 + 2*R1*R2 *cos(T2-T1) e
T = arctan[(R1*sinT 1 + R2*sinT2) / (R1*cosT1 + R2*cosT2)]
(+P se R1*cosT1 + R2*cosT2 (R*expT) = (+ e -) [ SQR(|R|)*[(cos( T/2) + i*sin(T/2) ]



Per mancanza di lettere greche e di simboli
ho indicato con :
R la lettera greca ro
T la lettera greca theta
SQR la radice quadrata
* il prodotto
^ la potenza
exp l'esponenziale
P il valore pigreco = 3,14159...
Citazione
 
 
-1 #1 Attilio Scifoni 2010-01-21 18:18
A pag.16, alla tabella 6.4 si potrebbero aggiungere la forma trigonometrica e esponenziale della somma,cioè :

FORMA TRIGONOMETRICA:
R1*(cosT1+i*sin T1) + R2*(cosT1+i*sin T2) = R*cosT ove
R = SQR (R1^2 + R2^2 + 2*R1*R2 *cos(T2-T1) e
T = arctan[(R1*sinT 1 + R2*sinT2) / (R1*cosT1 + R2*cosT2)]
(+P se R1*cosT1 + R2*cosT2 i anche la comoda forma algebrica, cioè :

FORMA ALGEBRICA:
SQR(a+ib) = (+ e -)[SQR[(Q+a)/2] + i*SQR[(Q-a)/2] * b/|b|
ove Q = SQR(a^2+b^2)

FORMA TRIGONOMETRICA:
SQR [ R*(cosT + isinT) ] = (+ e -) SQR|R|*exp(T/2)

FORMA ESPONENZIALE:
SQR(R*expT) = (+ e -) [ SQR(|R|)*[(cos( T/2) + i*sin(T/2) ]



Per mancanza di lettere greche e di simboli
ho indicato con :
R la lettera greca ro
T la lettera greca theta
SQR la radice quadrata
* il prodotto
^ la potenza
exp l'esponenziale
P il valore pigreco = 3,14159...
Citazione
 

Aggiungi commento

I commenti devono essere approvati dall'amministratore

Codice di sicurezza
Aggiorna