Sia $f(x,y)=x^2+y^2$; sia $Q=\{(x,y)\in\mathbb{R}^2:x^2+y^2\geq 1,|x|\leq 4,|x|-4\leq y\leq 4\}$. Siano M ed m i valori massimo e minimo assunti da f in Q. Calcolare M-3m.

SOLUZIONE. Anzitutto f non ha punti critici all'interno di Q; infatti $\nabla f=0$ se e solo se x=y=0, ed il punto (0,0) non appartiene a Q. Inoltre f è continua e Q è un insieme chiuso e limitato. Per il Teorema di Weierstrass f ammette massimo e minimo assoluti su Q. Tali punti, per quanto detto, non possono stare nella parte interna di Q, devono perciò stare sulla frontiera di Q. Osserviamo che f(x,y) non è altro che la distanza del punto (x,y) da (0,0); ne segue che, osservando il disegno di Q, i punti a distanza massima da (0,0) in Q sono i punti $(\pm 4,4)$, mentre i punti a distanza minima da (0,0) in Q sono i punti della circonferenza $x^2+y^2=1$. Quindi si trova $M=f(\pm 4,4)=32$, mentre m=1, da cui M-3m=29.