Sviluppo di derivate di ordine n di funzioni goniometriche con tecniche di analisi complessa

Con il presente studio l’autore, utilizzando formule note, esamina lo sviluppo delle derivate, di ordine (2n-1), e di ordine (2n), (n = 1,2,3,…), delle funzioni trigonometriche P(x) = Tan(x), e C(x) = Sec(x), determinando le espressioni che definiscono i coefficienti, in funzione di n, dei polinomi risultanti, ottenendo formule complesse straordinarie ed inusuali. Alla fine viene aggiunta una interessante applicazione.

Commenti

commenti