_Tipper
(30 punti)
7' di lettura
3,5 / 5 (6)

Definizione

Data una matrice

[math]A \in \mathbb{R}^{n imes n}[/math]
, sia
[math]\lambda_i \in \mathbb{C}[/math]
un suo autovalore. Si dice che
[math]v \in \mathbb{C}^n setmi
us {0}[/math]
(
[math]v[/math]
vettore di
[math]\mathbb{C}^n[/math]
diverso dal vettore nullo) è un autovettore di
[math]A[/math]
relativo all'autovalore
[math]\lambda_i[/math]
se e solo se risulta

[math]A v = \lambda_i v[/math]

o equivalentemente

[math](\lambda_i I - A) v = O[/math]

Lo spazio vettoriale generato dagli autovettori relativi a

[math]\lambda_i[/math]
si chiama autospazio di
[math]A[/math]
relativo all'autovalore
[math]\lambda_i[/math]
.
La dimensione di tale autospazio si chiama molteplicità  geometrica dell'autovalore
[math]\lambda_i[/math]
.

Per ogni autovalore

[math]\lambda_i[/math]
, se
[math]\mu_i[/math]
indica la sua molteplicità  algebrica e
[math]\nu_i[/math]
indica la sua molteplicità  geometrica, vale

[math]0

Quindi se un autovalore ha molteplicità  algebrica

[math]1[/math]
, allora ha necessariamente molteplicità  geometrica pari a
[math]1[/math]
.

Calcolo degli autovettori

Calcolo degli autovettori

1) Data

[math]A \in \mathbb{R}^{n imes n}[/math]
. si calcolano gli autovalori della matrice
[math]A[/math]

2) Considerato l'autovalore

[math]\lambda_i[/math]
, si costruisce il sistema
[math](\lambda_i I - A) v = O[/math]

3) Tutte le soluzioni non banali, cioè tutti i vettori

[math]v[/math]
diversi dal vettore nullo, che risolvono il sistema sono gli autovettori di
[math]A[/math]
relativi all'autovalore
[math]\lambda_i[/math]

4) Si ripetono i punti 2) e 3) per tutti gli autovalori trovati al punto 1)

Esempio: calcolo degli autovettori della matrice

[math]A = ((0, \quad 1, \quad 0),(-2, \quad -3, \quad \frac{1}{2}),(0, \quad 0, \quad 0))[/math]

Gli autovalori di

[math]A[/math]
sono
[math]\lambda_1 = 0[/math]
,
[math]\lambda_2 = -2[/math]
,
[math]\lambda_3 = -1[/math]
. Per calcolare gli autovettori relativi a
[math]\lambda_1[/math]
si calcola la matrice
[math]\lambda_1 I - A[/math]
e si imposta il sistema
[math](\lambda_1 I - A) v = O[/math]

[math]\lambda_1 I - A = - A = ((0, \quad -1, \quad 0),(2, \quad 3, \quad -\frac{1}{2}),(0, \quad 0, \quad 0))[/math]

da cui

[math](\lambda_1 I - A) v = O \implies ((0, \quad -1, \quad 0),(2, \quad 3, \quad -\frac\begin{cases} & 1}{2} \\ 0 & \quad 0)) ((v_1 \\ v_2 \\ v_3)) = ((0 \\ 0 \\ 0)) \implies {(- v_2 = 0 \\ 2 v_1 + 3 v_2 - \frac{1}{2} v_3 = 0 \\ 0 = 0 \ \end{cases}[/math]

Ponendo

[math]v_3 = \alpha[/math]
come parametro libero, dove
[math]\alpha \in \mathbb{R} setmi
us {0}[/math]
, si ottiene

[math]\egin{cases} -v_2 = 0 \\ v_1 = \frac{1}{4} v_3 \\ v_3 = \alpha \ \end{cases} = {(v_1 = \frac{\alpha}{4}),(v_2 = 0),(v_3 = \alpha):}[/math]

Al variare di

[math]\alpha \in \mathbb{R} setmi
us {0}[/math]
il generico autovettore relativo a
[math]\lambda_1[/math]
è

[math]v = ((\frac{\alpha}{4}),(0),(\alpha)) = \alpha ((\frac{1}{4}),(0),(1))[/math]

Una base per l'autospazio relativo all'autovalore

[math]\lambda_1[/math]
è
[math]{(\frac{1}{4}, 0, 1)}[/math]
. Dato che la dimensione dell'autospazio è
[math]1[/math]
la molteplicità  gemetrica di tale autovalore è
[math]1[/math]
(come era logico aspettarsi, dato che è
[math]1[/math]
la molteplicità  algebrica).

Per calcolare gli autovettori relativi a

[math]\lambda_2[/math]
si calcola la matrice
[math]\lambda_2 I - A[/math]
e si imposta il sistema
[math](\lambda_2 I - A) v = O[/math]

[math]\lambda_2 I - A = - 2 I - A = ((-2, \quad -1, \quad 0),(2, \quad 1, \quad -\frac{1}{2}),(0, \quad 0, \quad -2))[/math]

da cui

[math](\lambda_2 I - A) v = O \implies ((-2, \quad -1, \quad 0),(2, \quad 1, \quad -\frac{1}{2}),(0, \quad 0, \quad -2)) ((v_1),(v_2),(v_3)) = ((0),(0),(0)) \implies[/math]

[math]\implies \egin{cases} -2 v_1 - v_2 = 0 \\ 2 v_1 + v_2 - \frac{1}{2} v_3 = 0 \\ -2 v_3 = 0 \ \end{cases} \implies {(v_2 = -2 v_1),(-2 v_1 + 2 v_1 = 0),(v_3 = 0):}[/math]

Ponendo

[math]v_2 = \alpha[/math]
come parametro libero, dove
[math]\alpha \in \mathbb{R} setmi
us {0}[/math]
, si ottiene

[math]\egin{cases} v_1 = -\frac{v_2}{2} \\ v_2 = \alpha \\ v_3 = 0 \ \end{cases}[/math]

Al variare di

[math]\alpha \in \mathbb{R} setmi
us {0}[/math]
il generico autovettore relativo a
[math]\lambda_2[/math]
è

[math]v = ((-\frac{\alpha}{2}),(\alpha),(0)) = \alpha ((-\frac{1}{2}),(1),(0))[/math]

Una base per l'autospazio relativo all'autovalore

[math]\lambda_2[/math]
è
[math]{(-\frac{1}{2}, 1, 0)}[/math]
. Dato che la dimensione dell'autospazio è
[math]1[/math]
la molteplicità  gemetrica di tale autovalore è
[math]1[/math]
(come era logico aspettarsi, dato che è
[math]1[/math]
la molteplicità  algebrica).

Per calcolare gli autovettori relativi a

[math]\lambda_3[/math]
si calcola la matrice
[math]\lambda_3 I - A[/math]
e si imposta il sistema
[math](\lambda_3 I - A) v = O[/math]

[math]\lambda_3 I - A = - I - A = ((-1, \quad -1, \quad 0),(2, \quad 2, \quad -\frac{1}{2}),(0, \quad 0, \quad -1))[/math]

da cui

[math](\lambda_3 I - A) v = O \implies ((-1, \quad -1, \quad 0),(2, \quad 2, \quad -\frac{1}{2}),(0, \quad 0, \quad -1)) ((v_1),(v_2),(v_3)) = ((0),(0),(0)) \implies[/math]

[math]\implies \egin{cases} -v_1 - v_2 = 0 \\ 2 v_1 + 2 v_2 - \frac{1}{2} v_3 = 0 \\ -v_3 = 0 \ \end{cases} \implies {(v_1 = - v_2),(0 = 0),(v_3 = 0):}[/math]

Ponendo

[math]v_2 = \alpha[/math]
come parametro libero, dove
[math]\alpha \in \mathbb{R} setmi
us {0}[/math]
, si ottiene

[math]\egin{cases} v_1 = -\alpha \\ v_2 = \alpha \\ v_3 = 0 \ \end{cases}[/math]

Al variare di

[math]\alpha \in \mathbb{R} setmi
us {0}[/math]
il generico autovettore relativo a
[math]\lambda_3[/math]
è

[math]v = ((-\alpha),(\alpha),(0)) = \alpha ((-1),(1),(0))[/math]

Una base per l'autospazio relativo all'autovalore

[math]\lambda_3[/math]
è
[math]{(-1, 1, 0)}[/math]
. Dato che la dimensione dell'autospazio è
[math]1[/math]
la molteplicità  gemetrica di tale autovalore è
[math]1[/math]
(come era logico aspettarsi, dato che è
[math]1[/math]
la molteplicità  algebrica).