equazioni goniometriche

Messaggioda marcus112 » 03/07/2012, 09:12

$sinx=cosx$
Il libro porta come soluzione $x=45°+k360°$ a me risulta $45°+k180°$

$sinx=-cosx$
Il libro porta come soluzione $x=135°+k360°$ a me risulta $135°+k180°$
marcus112
Average Member
Average Member
 
Messaggio: 323 di 549
Iscritto il: 05/05/2009, 23:20

Re: equazioni goniometriche

Messaggioda prime_number » 03/07/2012, 09:52

Proviamo per via grafica, $X=cosx, Y=sin x$. L'equazione 1 equivale al sistema
$\{(X^2 + Y^2 =1),(X-Y=0):}$
sostituendo nella prima $2X^2 =1\to X=\pm 1/(\sqrt(2))\to cos x =\pm 1/(\sqrt(2))$, con rispettivamente sinx=\pm 1/(\sqrt(2))$ che corrisponde alla TUA soluzione.

Paola

ho editato!
Ultima modifica di prime_number il 03/07/2012, 10:29, modificato 1 volta in totale.
www.greedy-bear.com : il mio blog di cucina italiana e finlandese.
Avatar utente
prime_number
Cannot live without
Cannot live without
 
Messaggio: 3210 di 3680
Iscritto il: 17/09/2004, 15:20
Località: Helsinki

Re: equazioni goniometriche

Messaggioda marcus112 » 03/07/2012, 10:27

Grazie intanto per la collaborazione....
le due equazioni erano da risolvere utilizzando gli angoli complementari e supplementari...e a me vengono quei risultati.

Se le risolvi come equazioni lineari in seno e coseno....mi sembra che tu abbia fatto così...non dovrebbe comunque essere
$x=arctg(-b/a)+kpi$
Ultima modifica di marcus112 il 03/07/2012, 10:31, modificato 1 volta in totale.
marcus112
Average Member
Average Member
 
Messaggio: 324 di 549
Iscritto il: 05/05/2009, 23:20

Re: equazioni goniometriche

Messaggioda prime_number » 03/07/2012, 10:30

Ho editato sopra!
Hai ragione te!

Paola
www.greedy-bear.com : il mio blog di cucina italiana e finlandese.
Avatar utente
prime_number
Cannot live without
Cannot live without
 
Messaggio: 3211 di 3680
Iscritto il: 17/09/2004, 15:20
Località: Helsinki

Re: equazioni goniometriche

Messaggioda marcus112 » 03/07/2012, 10:33

Abbiamo risposto contemporaneamente...ma siamo arrivati alla stessa conclusione.

Grazie di nuovo
marcus112
Average Member
Average Member
 
Messaggio: 325 di 549
Iscritto il: 05/05/2009, 23:20

Re: equazioni goniometriche

Messaggioda marcus112 » 04/07/2012, 17:57

Ho provato a risolvere questa equazione
$sinx(cosx-1)=-1$
così...e chiedo un vostro parere!
$sinx(cosx-1)=-1=>sinx(cosx-1)=-sinx/sinx$ e arrivo (dividendo per sinx)a $(cosx-1)=-sinx=>sinx+cosx-1=0$
E p0i proseguo con le formule parametriche...posso avere un consiglio per risolverla in modo diverso?
marcus112
Average Member
Average Member
 
Messaggio: 326 di 549
Iscritto il: 05/05/2009, 23:20

Re: equazioni goniometriche

Messaggioda chiaraotta » 04/07/2012, 19:34

Se dividi l'equazione $sinx(cosx-1)=-sinx/sinx$ per $sinx$, non è vero che ottieni $(cosx-1)=-sinx$. Ottieni invece $cosx-1=-1/sinx$
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 977 di 2466
Iscritto il: 14/05/2011, 17:13

Re: equazioni goniometriche

Messaggioda prime_number » 05/07/2012, 10:05

Per dividere per $sin x$ devi essere sicuro che sia diverso da $0$.
$sin x =0 \Leftrightarrow x=k\pi$. Se sostituisco $k\pi$ nell'equazione iniziale ottengo:
$0((-1)^{k+1}-1)=-1$ falso!
Quindi se prima di dividere poniamo $x\ne k\pi$ non perdiamo soluzioni.
Questa era una premessa da fare, in altri esercizi può essere che ti perdi delle soluzioni per strada facendo così. Se $k\pi$ si fosse rivelato una soluzione, la dovevi tenere da parte, dividere lo stesso e alla fine aggiungevi $k\pi$ alle soluzioni trovate.

Paola
www.greedy-bear.com : il mio blog di cucina italiana e finlandese.
Avatar utente
prime_number
Cannot live without
Cannot live without
 
Messaggio: 3218 di 3680
Iscritto il: 17/09/2004, 15:20
Località: Helsinki

Re: equazioni goniometriche

Messaggioda giammaria » 05/07/2012, 16:47

Alle giustissime osservazioni di chiaraotta e prime_number aggiungo che secondo me la tua equazione non è risolubile con formule semplici. Sicuro di non aver sbagliato il testo?
- Indicando i metri con m e i centimetri con cm, si ha m=100 cm. Quindi 5 centimetri equivalgono a metri m=100*5=500.
- E' disonesto che un disonesto si comporti in modo onesto (R. Powell)
giammaria
Cannot live without
Cannot live without
 
Messaggio: 1934 di 5110
Iscritto il: 29/12/2008, 23:19
Località: provincia di Asti

Re: equazioni goniometriche

Messaggioda marcus112 » 07/07/2012, 08:42

Cosa intendi con formule semplici...e in quella che ho proposto come si potrebbe procedere?
marcus112
Average Member
Average Member
 
Messaggio: 327 di 549
Iscritto il: 05/05/2009, 23:20

Prossimo

Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 8 ospiti