ombra sole campanile alpha

Messaggioda stranamentemate » 29/06/2012, 13:18

L’ombra di un campanile è lunga la metà della sua altezza. Detta α◦ la misura (in
gradi) dell’angolo formato dal sole sull’orizzonte in quel momento, si può dire che
A. α◦ < 30◦
B. 30◦ ≤ α◦ < 45◦
C. 45◦ ≤ α◦ < 60◦
D. 60◦ ≤ α◦
E. è notte


anche con la soluzione proprio non ci capisco un tubo

Immagine
stranamentemate
Junior Member
Junior Member
 
Messaggio: 14 di 109
Iscritto il: 12/06/2012, 15:55

Re: ombra sole campanile alpha

Messaggioda piero_ » 30/06/2012, 10:54

ciao
la sezione è sbagliata, starebbe meglio in "secondaria di secondo grado".
Prendi il tuo libro di trigonometria e cerca il capitolo risoluzione dei triangoli rettangoli, se non ti è chiaro (o se ti sei già venduto il libro) chiedi pure.
piero_
Senior Member
Senior Member
 
Messaggio: 1184 di 1388
Iscritto il: 09/04/2009, 16:53

Re: ombra sole campanile alpha

Messaggioda stranamentemate » 02/07/2012, 16:10

purtroppo non ho ancora il libro, il 10 luglio farò il test al politecnico di milano, se lo passo comprerò un'intera enciclopedia di matematica :D
stranamentemate
Junior Member
Junior Member
 
Messaggio: 15 di 109
Iscritto il: 12/06/2012, 15:55

Re: ombra sole campanile alpha

Messaggioda piero_ » 02/07/2012, 19:00

ciao
qui c'è la risposta alla tua domanda.
https://www.matematicamente.it/formulari ... 803032679/
piero_
Senior Member
Senior Member
 
Messaggio: 1185 di 1388
Iscritto il: 09/04/2009, 16:53

Re: ombra sole campanile alpha

Messaggioda Seneca » 02/07/2012, 22:22

Moderatore: Seneca

Sposto la discussione in Secondaria II grado.
Seneca
Moderatore
Moderatore
 
Messaggio: 5111 di 6954
Iscritto il: 02/11/2009, 21:00

Re: ombra sole campanile alpha

Messaggioda stranamentemate » 28/07/2012, 14:23

non capisco comunque, è possibile sapere bene i passaggi intermedi, che formule guardare ecc? Datemi una mano please :oops:





ps: non ho passato il pretest :(
stranamentemate
Junior Member
Junior Member
 
Messaggio: 17 di 109
Iscritto il: 12/06/2012, 15:55

Re: ombra sole campanile alpha

Messaggioda chiaraotta » 28/07/2012, 15:34

Nella tabella che hai già usato
post648371.html#p648371
osserva la colonna di $tan alpha$, quella più a destra.
Nota che, nel primo quadrante (cioè con $0<=alpha<pi/2$ oppure $0°<=alpha<90°$), al crescere di $alpha$ cresce anche $tan alpha$.
Poiché tu cerchi per quale angolo $alpha$ il valore di $tan alpha$ è $2$, e $2>sqrt(3)$, allora $alpha$ deve essere un angolo maggiore di quello la cui tangente è $sqrt(3)$, che è un angolo di $60°$.
Quindi è giusta la risposta D.
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 1086 di 2466
Iscritto il: 14/05/2011, 17:13

Re: ombra sole campanile alpha

Messaggioda giammaria » 28/07/2012, 15:44

Chiaraotta ti ha dato una risposta semplice e rigorosa ma che richiede qualche conoscenza di trigonometria; difficilmente le hai se non possiedi ancora il libro. Ti do una soluzione accessibile anche senza trigonometria: osserva la figura e, ad occhio, vedi subito che l'angolo è circa di 60°, quindi la risposta giusta deve essere C o D. Per sapere quale delle due ti basta pensare al triangolo equilatero avente l'ombra (che suppongo lunga $a$) come semibase: la sua altezza è $sqrt3 a$ (cioè meno di $2a$) quindi l'angolo di 60° sta dentro ad $alpha$ che quindi gli è maggiore.

Ti do un consiglio: se pensi di frequentare il politecnico o facoltà scientifiche, compra e studia subito un testo di trigonometria: è argomento di quasi tutte le medie superiori e si dà per scontato che gli studenti la conoscano.
- Indicando i metri con m e i centimetri con cm, si ha m=100 cm. Quindi 5 centimetri equivalgono a metri m=100*5=500.
- E' disonesto che un disonesto si comporti in modo onesto (R. Powell)
giammaria
Cannot live without
Cannot live without
 
Messaggio: 2010 di 5104
Iscritto il: 29/12/2008, 23:19
Località: provincia di Asti

Re: ombra sole campanile alpha

Messaggioda stranamentemate » 30/07/2012, 10:49

Ottima spiegazione il ragionamento è chiaro ma il mio problema si trova a monte ovvero come faccio a sapere che la tangente vale 2? a quale parametro mi riferisco? Se ad esempio l'ombra fosse 3 volte e mezzo minore dell'altezza come trovo il valore della tangente.

Ho comprato un libro di teoria che include i 5 anni delle superiori, ma è troppo scarno, ho già ordinato dei libri di trigonometria/funzioni che sono la parte in cui ho più carenze.
stranamentemate
Junior Member
Junior Member
 
Messaggio: 18 di 109
Iscritto il: 12/06/2012, 15:55

Re: ombra sole campanile alpha

Messaggioda chiaraotta » 30/07/2012, 11:01

Che, in quel caso, $tan alpha=2$ risulta dalla definizione di tangente di un angolo. Se devi usare le funzioni trigonometriche bisogna che tu parta dalle loro definizioni.
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 1101 di 2466
Iscritto il: 14/05/2011, 17:13

Prossimo

Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 17 ospiti