rappresentazione grafica della funzione trigonometrica f(x)

Messaggioda jaab » 14/06/2011, 14:31

Conosco i grafici del senx e cosx (singolarmente) ma, come da titolo, non so procedere alla rappresentazione grafica della f(x), $ y=sinx+cos x $.
Non so proprio da dove "partire"...
jaab
Starting Member
Starting Member
 
Messaggio: 7 di 15
Iscritto il: 26/02/2011, 23:15

Messaggioda Delirium » 14/06/2011, 14:40

Il grafico della funzione considerata potrebbe essere ottenuto brutalmente attraverso la somma dei due grafici noti (disegnando dapprima il grafico di \( \displaystyle \sin x \) , quindi quello di \( \displaystyle \cos x \) e infine operando una somma punto per punto nell'intervallo di interesse, valutando la periodicità secondo le regole apprese).
L'alternativa è effettuare uno studio di funzione completo.
Delirium
 

Messaggioda jaab » 14/06/2011, 14:48

Delirium ha scritto:L'alternativa è effettuare uno studio di funzione completo.

ecco, è proprio quello che mi interessa. Devo procedere alla stregua di una funzione non trigonometrica?
jaab
Starting Member
Starting Member
 
Messaggio: 8 di 15
Iscritto il: 26/02/2011, 23:15

Messaggioda Delirium » 14/06/2011, 14:59

Allora calcola il dominio e quindi scegli un intervallo indicativo (giacché la funzione è periodica), studia il segno, trova le intersezioni con gli assi, verifica la parità o la disparità, calcola gli eventuali asintoti e quindi studia derivata prima e derivata seconda.
Delirium
 

Messaggioda jaab » 14/06/2011, 15:05

altrove mi hanno consigliato di procedere alla trasformazione della somma di coseno e seno in un UNICO seno o coseno. Puoi farmi un esempio?
Questo procedimento è giusto? Più o meno complicato rispetto al "classico" studio di funzione?
jaab
Starting Member
Starting Member
 
Messaggio: 9 di 15
Iscritto il: 26/02/2011, 23:15

Messaggioda chiaraotta » 14/06/2011, 15:37

Infatti, se si nota che la funzione $f(x) = sen x + cos x = sqrt(2) * sen(x + \pi/4)$, allora ci si rende conto facilmente che il grafico ha un andamento sinusoidale con ampiezza $sqrt(2)$, traslato verso sinistra di $\pi/4$ rispetto a quello di $f(x) = sen x$.
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 32 di 2466
Iscritto il: 14/05/2011, 17:13

Messaggioda Delirium » 14/06/2011, 18:47

jaab ha scritto:altrove mi hanno consigliato di procedere alla trasformazione della somma di coseno e seno in un UNICO seno o coseno. Puoi farmi un esempio?
Questo procedimento è giusto? Più o meno complicato rispetto al "classico" studio di funzione?


Ѐ ciò di cui l'utente chiaraotta ha fatto menzione. Il procedimento è senz'altro corretto (basta svolgere i calcoli per verificare). Quanto alla sua difficoltà, si tratta soltanto di "riuscire a vedere" l'opportuna trasformazione e quindi di saperla trasporre in un piano cartesiano, secondo le regole dei grafici deducibili.
Delirium
 

Messaggioda jaab » 11/07/2011, 11:44

grazie, alla fine ho capito come fare (chiarotta docet XD)

un'altra domanda
nell'intervallo [0 pigreco]
in questo caso, abbiamo un max relativo e nessun min relativo.
Le ipotesi del teorema di W. sono verificate ma non riesco a capire dove sono questi max e min assoluti.
Coincidono con i relativi?
jaab
Starting Member
Starting Member
 
Messaggio: 11 di 15
Iscritto il: 26/02/2011, 23:15

Messaggioda chiaraotta » 11/07/2011, 15:27

Nell'intervallo $[0, pi]$ il massimo relativo e assoluto è in $(pi/4, sqrt(2))$, il minimo assoluto in $(pi, -1)$.
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 105 di 2466
Iscritto il: 14/05/2011, 17:13

Messaggioda jaab » 11/07/2011, 15:44

ok, tutto chiaro. Grazie ancora chiaraotta!
jaab
Starting Member
Starting Member
 
Messaggio: 12 di 15
Iscritto il: 26/02/2011, 23:15

Prossimo

Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 23 ospiti