insieme vuoto.

Messaggioda anto_zoolander » 21/11/2018, 16:40

Ciao!

mi è sorto un dilemma.
Consideriamo un insieme non vuoto $A$, sappiamo che $emptyset subsetA$: qualsiasi sia l'insieme $A$.
Ha senso la scrittura $Asetminus emptyset$?

logicamente mi pare abbia senso poiché $forall x in A( x in A wedge xnotin emptyset)$ è vera e quindi si avrebbe praticamente $A=Asetminusemptyset$ ma quindi che significa sottrarre l'insieme vuoto se poi di fatto:

1. l'insieme vuoto si comporta come neutro per la sottrazione insiemistica.
2. l'insieme vuoto è sottoinsieme di ogni insieme, quindi non si può togliere.

'sto insieme vuoto è brutto forte.
Gli indiani già sapevano che lo scalpo fosse una varietà pettinabile :-k
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3371 di 3538
Iscritto il: 06/10/2014, 15:07
Località: Palermo

Re: insieme vuoto.

Messaggioda fmnq » 21/11/2018, 17:20

Meno male che non hai chiesto quanto fa \(\emptyset\smallsetminus\emptyset\). Sarebbe stato difficile convincerti che fa \(\emptyset\).

Più seriamente, non appena \(A,B\subseteq X\) (ipotesi che non è restrittiva), si ha \(A\smallsetminus B := A\cap B^c\). Questo implica che \(A\smallsetminus \emptyset = A\cap X=A\).
fmnq
Starting Member
Starting Member
 
Messaggio: 19 di 44
Iscritto il: 03/10/2017, 23:14

Re: insieme vuoto.

Messaggioda Martino » 21/11/2018, 17:21

anto_zoolander ha scritto:non si può togliere
Il nulla non si può togliere? Certo che sì, solo che significa non fare niente :) logicamente è chiaro che $A-emptyset = A$ per ogni insieme $A$, perché la proposizione $x notin emptyset$ è sempre vera.
Le persone che le persone che le persone amano amano amano.
Avatar utente
Martino
Moderatore globale
Moderatore globale
 
Messaggio: 7314 di 7318
Iscritto il: 21/07/2007, 10:48
Località: Brasilia

Re: insieme vuoto.

Messaggioda anto_zoolander » 21/11/2018, 17:31

fmnq ha scritto:Meno male che non hai chiesto quanto fa \(\emptyset\smallsetminus\emptyset\). Sarebbe stato difficile convincerti che fa \(\emptyset\).

infatti sarebbe dovuta essere la domanda successiva :smt044

@fmnq,Martino
Infatti a livello formale c'ero, solo che a livello intuitivo forse ho fatto l'errore di pensare 'tolgo da $A$ l'insieme vuoto' quando invece è 'tolgo da $A$ gli elementi dell'insieme vuoto $equiv$ non tolgo da $A$ elementi'.

la domanda è nata da un errore di scrittura quando per non cancellare sul quaderno una frase ho scritto $Asetminus emptyset$ quando avrei dovuto scrivere $Asetminus{emptyset}$ ($A$ è una famiglia di insiemi cui $emptyset$ appartiene).

Ritengo che si faccia troppa poca teoria degli insiemi all'università :evil:
Gli indiani già sapevano che lo scalpo fosse una varietà pettinabile :-k
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3374 di 3538
Iscritto il: 06/10/2014, 15:07
Località: Palermo

Re: insieme vuoto.

Messaggioda Indrjo Dedej » 22/11/2018, 13:50

@anto, devi fare logica. Ti farà bene. Ma come si deve, eh. E noterai che queste situzioni sono naturali.
Euclide! Chi era costui? (adattamento da "I promessi sposi") ~ io :roll:

Usa $\exists$ e $\forall$. Non te lo scordare. ~ ancora io :-D
Indrjo Dedej
Average Member
Average Member
 
Messaggio: 577 di 583
Iscritto il: 31/05/2016, 19:58
Località: Milano

Re: insieme vuoto.

Messaggioda fmnq » 22/11/2018, 14:26

anto_zoolander ha scritto:Ritengo che si faccia troppa poca teoria degli insiemi all'università :evil:

...fare logica, per poi accorgersi che questa frase va corretta in
Ritengo che si faccia troppa teoria degli insiemi all'università :evil:

(click here for more info)
fmnq
Starting Member
Starting Member
 
Messaggio: 20 di 44
Iscritto il: 03/10/2017, 23:14

Re: insieme vuoto.

Messaggioda anto_zoolander » 22/11/2018, 14:28

@indrjo
Si sono d’accordo, devo farla. Tu che a quanto ho capito hai cominciato a farla da un po’, con cosa hai iniziato? Io ho il libro di mendelson, ma non è molto friendly per una lettura serale.

@fmnq
Un altro categorista, scommetto :lol:
Gli indiani già sapevano che lo scalpo fosse una varietà pettinabile :-k
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3378 di 3538
Iscritto il: 06/10/2014, 15:07
Località: Palermo

Re: insieme vuoto.

Messaggioda Indrjo Dedej » 23/11/2018, 10:53

@fmnq,
Ritengo che si faccia troppa teoria degli insiemi all'università

questo è un punto di arrivo di un percorso lungo. :wink:

@anto,
Mendelson va bene per una introduzione. I primi capitoli sono buoni. Non ti chiedo di arrivare a Gödel, eh. Però allo studio affianca la pratica. Questa pratica: puoi provare a riprendere parti già studiate o esercizi già fatti, anche semplici. Smontali. Sotto corrono assunzioni, connettivi e quantificatori. Falli emergere. E studia i passi logici che fai. E interrogati, chiediti «Perché?». Perché senza questo ingrediente non c'è libro che tenga.

Tanto per esempio, ti faccio vedere quanto naturale è il fatto che \(\varnothing \setminus \varnothing = \varnothing\) ad uno che ha delle basi di logica, ma solide. È vero (perché?) \[\forall x \, \big( x \in \varnothing \Leftrightarrow x \in \varnothing \setminus \varnothing\big) \, .\] Quindi per l'assioma di estensionalità l'uguaglianza proposta.
Euclide! Chi era costui? (adattamento da "I promessi sposi") ~ io :roll:

Usa $\exists$ e $\forall$. Non te lo scordare. ~ ancora io :-D
Indrjo Dedej
Average Member
Average Member
 
Messaggio: 578 di 583
Iscritto il: 31/05/2016, 19:58
Località: Milano


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 7 ospiti