Divisori dello zero e nilpotenti

Messaggioda kekkomengoli95 » 12/03/2019, 19:57

Salve, come potrei dimostrare che se un primo divide un divisore dello zero allora questo primo divide un nilpotente? Grazie mille
kekkomengoli95
Starting Member
Starting Member
 
Messaggio: 17 di 17
Iscritto il: 13/05/2018, 16:50

Re: Divisori dello zero e nilpotenti

Messaggioda Reyzet » 13/03/2019, 08:39

Credo sia vero, infatti sia $A$ anello commutativo (non l'hai detto ma penso sia così, ma forse non serve nemmeno), $p$ primo e $a$ divisore dello zero, cioè $ab=0$ per qualche $b\inA$, ora dal fatto che p divide a, divide pure lo zero perché si ha $a=pc$ per qualche c, e allora $0=p(bc)$, adesso se $d$ è nilpotente esiste $N$ tale che $d^N=0=p(bc)$, p divide il membro di destra e allora divide pure $d^N$, adesso usa il fatto che è primo e hai finito.
Reyzet
Junior Member
Junior Member
 
Messaggio: 73 di 162
Iscritto il: 20/01/2018, 14:24

Re: Divisori dello zero e nilpotenti

Messaggioda Stickelberger » 17/03/2019, 10:10

kekkomengoli95 ha scritto:allora questo primo divide un nilpotente

Lo zero e' nilpotente e quindi l'affermazione e' banale.
Se invece intendi un nilpotente non nullo, allora e' falsa:
$\overline{2}$ e' sia primo che divisore dello zero di $ZZ//6ZZ$,
ma l'unico nilpotente e' $\overline{0}$.
Avatar utente
Stickelberger
Junior Member
Junior Member
 
Messaggio: 349 di 364
Iscritto il: 12/12/2010, 16:24


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 7 ospiti