equazione conica come sezione di un cono

Messaggioda eminova » 23/02/2020, 21:32

Sezionando il cono $x^2+y^2=z^2$ con un piano $z=mx+1$ , se $0<m<1$ si dovrebbe ottenere una ellisse. Come si fa a scrivere l'equazione di questa curva in un sistema di riferimento contenuto nel piano, in modo da riconoscere che è una ellisse trovarne i parametri ( semiassi, centro ecc...) ? E quale sistema di riferimento si deve scegliere per avere l'equazione più semplice ?
eminova
New Member
New Member
 
Messaggio: 52 di 52
Iscritto il: 08/04/2013, 22:41

Re: equazione conica come sezione di un cono

Messaggioda solaàl » 25/02/2020, 10:45

Da \(X^2+Y^2=(mX+1)^2\) ricavi un polinomio di grado 2 in \(X,Y\), cui è associata una forma quadratica, per la precisione \(\left(\begin{smallmatrix}1-m^2 & 0 & -m \\0 & 1 & 0 \\-m & 0 & 1\end{smallmatrix}\right)\).

Ora si tratta di classificare questa forma quadratica: vedrai che per vari valori di $m$ (esattamente quelli che definiscono solitamente le coniche) essa è associata a un'ellisse, una parabola, una iperbole.

(Ovviamente sto supponendo che ti interessi la classificazione delle coniche come superfici reali: se ti interessasu $CC$ è molto più facile; se ti interessa su $QQ$, è molto più difficile.
Боже, тебе тоже нравятся фильмы Ардженто?
Держи мою руку в самых страшных моментах
Боже, тебе тоже.
Avatar utente
solaàl
Junior Member
Junior Member
 
Messaggio: 242 di 464
Iscritto il: 31/10/2019, 01:45


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: solaàl e 26 ospiti