Passa al tema normale
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

Algebretta

31/03/2006, 16:26

1) Sia $I=(x^2+1,y)$ l'ideale generato da $x^2+1$ e $y$ nel dominio $C[x,y]$. MOstrare che I non è primo e calcolare il quoziente.

2) Sia A un dominio e S una sua parte moltiplicativa (S è chiuso rispetto alla moltiplicazione e $1\inS$). Sia B un altro dominio e f un omorfismo iniettivo da A in B. Definiamo ora ne l prodotto cartesiano AxS la relazione di equivalenza $\rho$ che rende equivalenti due coppie $(a_1,s_1),(a_2,s_2)\inAxS$ sse $a_1s_2=a_2s_1$. Dopo aver verificato che f(S) è una parte moltiplicativa di B, dimostrare che f induce un omorfismo iniettivo da $(AxS)/\rho$ a $(Bxf(s))/\rho$

01/04/2006, 15:41

vabbè.. il secondo lasciamolo perdere (comunque è facile), però il primo dà qualche problema strano... forse mi sbaglio, ma, a rigore, $(C[x,y])/I=(C[x])/((x^2+1))=C[i]=C$... ma come diavolo fa a venire un campo se l'ideale non è primo??

04/04/2006, 15:19

Mi sembra che $(C[x])/((x^2+1))$ possa scriversi come gruppo additivo isomorfo ai polinomi di grado 1 in una variabile (e quindi a $CxC$) con in più il prodotto modulo $x^2+1$ (con $[x+i]$ e $[x-i]$ divisori di $[0]$). Però non so dirti perché il tuo ragionamento non funziona...

04/04/2006, 16:43

infatti è strano.. anche perchè la "x" dei polinomi di grado 1 che dici te è una radice formale di $x^2+1$, ovvero $i$.. e ritorna quindi C.. bah!!

05/04/2006, 08:18

Ci sono:
$(K[x])/((x^2-d))=K[\sqrt{d}]$ sse $x^2-d$ è irriducibile in K!
Comunque non può essere nemmeno x=i (altrimenti dovrebbe essere x-i=0, che non è: x-i è solo uno 0-divisore).

05/04/2006, 09:38

ok
Rispondi al messaggio


Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010.
©2000— Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.