Pare carino

Messaggioda Valerio Capraro » 13/04/2006, 18:17

Sia p un primo dispari e d un intero tale che per ogni intero $s>1$ risulta $p^{d^s}\equiv1(d)$. Mostratre che allora la congruenza è verificata anche per s=1.
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1150 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda Valerio Capraro » 18/04/2006, 21:36

eppure sembra facile... almeno per d dispari è poco più di una banalità
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1159 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Re: Pare carino

Messaggioda DavidHilbert » 18/04/2006, 22:30

ubermensch ha scritto:Sia p un primo dispari e d un intero tale che per ogni intero $s>1$ risulta $p^{d^s}\equiv1(d)$. Mostratre che allora la congruenza è verificata anche per s=1.

...una curiosità: tu l'hai dimostrato, uber? :|
DavidHilbert
 

Messaggioda Valerio Capraro » 18/04/2006, 22:40

no... hai idee te?
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1160 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda DavidHilbert » 18/04/2006, 22:51

Sì, uber, ho idea che è un altro fake. E mi chiedo: te l'inventi o sono pescati da qualche libro? Nel secondo caso, brucia il libro! Nel primo caso, invece, per uniformità di trattamento... :-D
DavidHilbert
 

Messaggioda Valerio Capraro » 18/04/2006, 23:09

cosa intendi per "un altro fake"?
è una cosa che mi serve per completare la dimostrazione di un risultato che avevo postato qualche tempo fa: se $h,k$ sono due interi per cui $p^h\equiv1(h)$ e $p^k\equiv1(k)$, allora anche $p^{hk}\equiv1(hk)$
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1162 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda Valerio Capraro » 18/04/2006, 23:14

IL vocabolario dice fake=falso.... pensi sia falsa? o sai che è falsa?
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1164 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda DavidHilbert » 18/04/2006, 23:28

Ho saputo ch'era falsa dopo averla fissata per non più di due minuti. Prendi $p=3$ e $d = 10$. Siccome $3$ non è un residuo quadratico mod 5, banalmente or$d_{10}(3) = 4$. Perciò $p^{d^s} \equiv 1$ mod d, per ogni intero $s > 1$, eppure $p^d - 1$ non è divisibile per $d$.
DavidHilbert
 

Messaggioda Valerio Capraro » 18/04/2006, 23:50

mmmmmmmmmmmm.....
hai perfettamente ragione (come al solito!)
in realtà mi servirebbe qualcosa di meno per completare la dimostrazione. In particolare mi serve che se $n_1$ e $n_2$ hanno gli stessi fattori primi e $h_1$, $k_1$ sono coprimi fra loro e con gli $n_i$. Allora se $p^{n_1^2n_2^2h_1k_1}\equiv1(n_1^2n_2^2h_1k_1)$, anche $p^{n_1n_2h_1k_1}\equiv1(n_1n_2h_1k_1)$.
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1165 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 6 ospiti