Algebrina (=almeno forse qualcuno ci prova)

Messaggioda Valerio Capraro » 19/05/2006, 00:51

Mostrare che un gruppo di ordine $2m$ con $m$ dispari, ha un sottogruppo di ordine $m$
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1278 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda Valerio Capraro » 20/05/2006, 01:12

Sia $x$ l'elemento di ordine 2 di $G$ e si faccia agire $G$ per moltiplicazione destra sul suo insieme sostegno. L'omomorfismo da $G$ a $Sym_{2m}$ è iniettivo e quindi $G$ si immerge in $Sym_{2m}$, inoltre $G$, pensato dentro $Sym$ ha una permutazione dispari generata da $x$ (.....non lo dimostro....) e dunque $GA_{2m}=Sym_{2m}$. Dal terzo teorema di isomorfismo allora si ottiene $2=|(sym_{2m}/(A_{2m})|=|(GA_{2m}/(A_{2m})|=|G/(G\capA_{2m}| e dunque $G$ ha un sottogruppo di indice 2 e ordine m.
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 1295 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti

cron