Valore atteso delle potenze della normale standard

Messaggioda thedarkhero » 18/08/2017, 03:00

Sia $X~N(0,1)$ una variabile aleatoria avente distribuzione normale standard.
So che se $n\in NN$ è dispari allora il valore atteso di $X^n$ è $0$, ma si può dire qualcosa sul valore atteso di $X^n$ nel caso di $n$ pari?
thedarkhero
Senior Member
Senior Member
 
Messaggio: 1349 di 1402
Iscritto il: 04/06/2008, 23:21

Re: Valore atteso delle potenze della normale standard

Messaggioda tommik » 18/08/2017, 06:55

Se devi calcolare i momenti, usa la Funzione Generatrice dei Momenti (MGF)


$M_X(t)=e^(t^2/2)=sum_(n=0)^(oo)(t^2/2)^n/(n!)$


$sum_(n=0)^(oo)(t^2/2)^n/(n!)=sum_(n=0)^(oo)t^(2n)/(2^n*n!)=sum_(n=0)^(oo)((2n)!t^(2n))/((2n)!(2^n*n!))$


Ora, sapendo che

$E[X^n]=d^n/(dt^n)M_X(t)]_(t=0)$


abbiamo subito, con $N$ intero maggiore di zero:1

$E[X^(2n)]=((2n)!)/(2^n*n!)$


:rock:

Note

  1. e dalla stessa formula anche $E[X^(2n+1)]=0$
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 4050 di 5754
Iscritto il: 23/04/2015, 14:13
Località: in provincia di Varese

Re: Valore atteso delle potenze della normale standard

Messaggioda markowitz » 18/08/2017, 10:23

Le risposte di tommik sono sempre fin troppo esaustive :-D
@tommik non so che lavoro fai ... ma dovevi fare il Prof. :D

@thedarkhero
qualcosa potevi dire anche senza la risposta sopra ... che pochi troverebbero in breve tempo. E' noto che il momento quarto centrato, e la curtosi, di una normale standard è pari a $3$, è da li che conviene iniziare a ragionare. Qui trovi la risposta alla tua domanda
https://en.wikipedia.org/wiki/Normal_di ... on#Moments
che anzi non è limitata al caso standardizzato. Ponendo $sigma=1$ ti ritrovi facilmente con i valori della formula di tommik.
markowitz
Average Member
Average Member
 
Messaggio: 527 di 622
Iscritto il: 14/02/2010, 22:50

Re: Valore atteso delle potenze della normale standard

Messaggioda thedarkhero » 21/08/2017, 19:24

Grazie mille ad entrambi! ;)

In effetti l'approccio di @tommik sembra più generale, in quanto si potrebbe adottare per una qualsiasi distribuzione (di cui si conosce la MGF)...ma anche perchè non richiede di conoscere ulteriori proprietà specifiche della normale :-D
thedarkhero
Senior Member
Senior Member
 
Messaggio: 1350 di 1402
Iscritto il: 04/06/2008, 23:21


Torna a Statistica e probabilità

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti