Chiarimento gaussiana standard

Messaggioda beppe86 » 14/05/2007, 17:37

Ciao ragazzi studiando le gaussiane mi sono arenato sul passaggio che introduce la gaussiana standard.

Sia $X~N(mu, sigma^2)$ allora $Z=(X-mu)/(sigma)$ è una v.a di media 0 e varianza 1. Una tale variabile è detta normale standard e ha funzione di ripartizione = $1/(rad(2pi))*int e^(-y^2/2) dy$.
La premessa, se non dico una fesseria è che la gaussiana è riconducibile a una binomiale di parametri $mu, sigma^2$ giusto? La cosa che non capisco è da dove esce la $Z$, non riesco a focalizzarla.

Poi volevo chiedere conferma (spero mi arrivi una conferma :D) che la funzione di densità di una gaussiana standard è $f(x)=1/(rad(2pi))*e^(-(x^2)/2)$, in poche parole la stessa di una generica però i parametri sono sempre $mu=0$ e $sigma=1$.

Grazie in anticipo
beppe86
Junior Member
Junior Member
 
Messaggio: 74 di 177
Iscritto il: 24/05/2006, 12:31

Messaggioda spassky » 14/05/2007, 22:11

Z è definita in quel modo, perchè definendola così hai una gaussiana a media nulla e varianza unitaria ( di cui sai tutto perchè è tabellata).
Siccome l'integrale della curva di gauss non è esprimibile analiticamente, è facile capire come ci si rivolga verso una standardizzazione ( la gaussiana standard) semplice e che puoi trovare tabellata su tutti i libri di statistica.

Se ti chiedi perchè una va gaussiana a media nulla e varianza $sigma^2$ con quella trasformazione diventa una gaussiana standardizzata, è presto detto :
se alla gaussiana togli un valore pari alla propria media $mu$ il risultato è che la gaussiana risultante ha media nulla.
Se dividi il tutto per il valore della varianza $sigma^2$, la media è $0/sigma^"$ che è pur sempre zero, e la varianza deve essere divisa per $sigma^2$ e quindi vale 1.

Spero di esser stato chiaro
spassky
Junior Member
Junior Member
 
Messaggio: 365 di 440
Iscritto il: 16/04/2004, 14:17

Messaggioda beppe86 » 15/05/2007, 12:07

Ah ok, quindi $Z$ viene definita ora e non deriva dalla riconducibilità della gaussiana alla binomiale giusto?

E poi la funzione di densità che ho scritto nel primo post per la gaussiana standard è corretta?

Grazie
beppe86
Junior Member
Junior Member
 
Messaggio: 75 di 177
Iscritto il: 24/05/2006, 12:31


Torna a Statistica e probabilità

Chi c’è in linea

Visitano il forum: Nessuno e 15 ospiti