Approssimazione Gaussiana (2)

Messaggioda vitomondelli » 07/11/2018, 19:39

2)si sa che una v.a. X ha una varianza $\sigma^2 = 4$, ma non se ne conosce l'attesa $\mu$: si eseguono $n = 64$ misure di X e se ne calcola la media Xn. Facendo uso dell'approssimazione normale, calcolare la probabilità $P{|bar(X)_n - \mu|>0.5}$ che il valore assoluto dello scarto fra media Xn e valore d'attesa $\mu$ superi 0.5.

Per il secondo esercizio ho cercato di applicare un ragionamento simile ma non mi viene nulla in mente su come trovarmi l'attesa. Suggerimenti?
Ultima modifica di tommik il 07/11/2018, 20:59, modificato 1 volta in totale.
Motivazione: Diviso argomento e sistemate formule
vitomondelli
Starting Member
Starting Member
 
Messaggio: 5 di 8
Iscritto il: 04/11/2018, 18:51

Re: Approssimazione Gaussiana (2)

Messaggioda tommik » 07/11/2018, 21:04

Nessuno ti chiede di calcolare $mu$

Suggerimento: che distribuzione ha (approssimativamente) la variabile $Z=4(bar(X)_(64)-mu)$ ??

Ps: per tenere la stanza in ordine preferisco che si posti un nuovo topic per ogni esercizio (l'altro va bene)

Grazie
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5300 di 5838
Iscritto il: 23/04/2015, 14:13
Località: in provincia di Varese

Re: Approssimazione Gaussiana (2)

Messaggioda vitomondelli » 08/11/2018, 12:34

Ti rispondo dal lavoro. Credo sia una distribuzione normale o Gaussiana (come suggerisce il titolo del post :D), purtroppo però non ho ben capito dove mi porta sapere questa cosa..
vitomondelli
Starting Member
Starting Member
 
Messaggio: 6 di 8
Iscritto il: 04/11/2018, 18:51

Re: Approssimazione Gaussiana (2)

Messaggioda tommik » 08/11/2018, 12:41

vitomondelli ha scritto:purtroppo però non ho ben capito dove mi porta sapere questa cosa..



ti porta a vedere immediatamente che la richiesta dell'esercizio può essere riscritta così: calcolare la probabilità che

$P{|Z|>2}$ dove Z è una gaussiana std....e quindi consulti le tavole ed hai finito.

Sfruttando la simmetria della variabile in questione, la probabilità richiesta è infatti pari a $2*Phi(-2)=0.0455$

sapere quanto sia la media "vera" non ti interessa....stai calcolando l'area delle due code. La media $mu$ serve solo a traslare la distribuzione ma non ne modifica la forma.

:drinkers:
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5304 di 5838
Iscritto il: 23/04/2015, 14:13
Località: in provincia di Varese

Re: Approssimazione Gaussiana (2)

Messaggioda vitomondelli » 08/11/2018, 13:58

Quel $2$ di $P{|Z| > 2}$ è il valore di $\sigma$?
vitomondelli
Starting Member
Starting Member
 
Messaggio: 7 di 8
Iscritto il: 04/11/2018, 18:51

Re: Approssimazione Gaussiana (2)

Messaggioda tommik » 08/11/2018, 14:15

vitomondelli ha scritto:Quel $2$ di $P{|Z| > 2}$ è il valore di $\sigma$?


No, coincide con $sigma$ ma per puro caso.

Il testo chiede di calcolare la seguente probabilità

$P{|(bar(X)_64-mu)|>1/2}$

Ora, dai dati sai che $E[bar(X)_64]=mu$ e $V[bar(X)_64]=1/16$

Quindi riscrivi il testo così:

$P{|4(bar(X)_64-mu)|>4*1/2}=P{|Z|>2}$

come puoi notare

$E[Z]=4*0=0$

mentre

$V[Z]=4^2V[bar(X)_64]=1$

per n sufficientemente grande posso approssimare la distribuzione ad una gaussiana.


fine
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5305 di 5838
Iscritto il: 23/04/2015, 14:13
Località: in provincia di Varese

Re: Approssimazione Gaussiana (2)

Messaggioda vitomondelli » 08/11/2018, 21:32

L'unica cosa che ancora mi sfugge è il perchè ha moltiplicato per $4$ $P{|(\bar(X)_64-\mu)|>1/2}$
vitomondelli
Starting Member
Starting Member
 
Messaggio: 8 di 8
Iscritto il: 04/11/2018, 18:51

Re: Approssimazione Gaussiana (2)

Messaggioda tommik » 09/11/2018, 10:25

In primis non mi pare affatto di aver moltiplicato $xx4$ la probabilità ma ho moltiplicato la variabile....e non è la stessa cosa.


In secundis
, riprendendo questo TUO messaggio da un topic precedente

vitomondelli ha scritto: Guardando meglio la parte di teoria non ho trovato esempi da cui capirci di più ma solo la formula che sarebbe $\Phi((x-n\mu)/(\sigmasqrt(n)))$


e ricordando che in quella formula, come puoi controllare qui, $X$ è una somma, ovvero $Sigma_iX_i$.

Se nell'argomento della $Phi$ dividi sopra e sotto per $n$ trovi $(bar(X)-mu)/sigma sqrt(n)=(bar(X)-mu)/2 sqrt(64)=4(bar(X)-mu)$

che è sempre la stessa cosa......
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5306 di 5838
Iscritto il: 23/04/2015, 14:13
Località: in provincia di Varese

Re: Approssimazione Gaussiana (2)

Messaggioda starwolf98 » 20/06/2019, 17:56

tommik ha scritto:
Sfruttando la simmetria della variabile in questione, la probabilità richiesta è infatti pari a $2*Phi(-2)=0.0455$

:drinkers:


Da dove esce il 2 che moltiplica Phi(-2)??
starwolf98
Starting Member
Starting Member
 
Messaggio: 1 di 1
Iscritto il: 20/06/2019, 17:55

Re: Approssimazione Gaussiana (2)

Messaggioda tommik » 20/06/2019, 18:28

starwolf98 ha scritto:
Da dove esce il 2 che moltiplica Phi(-2)??


dalle proprietà di simmetria della Gaussiana Standard

$mathbb{P}{|Z|>2}=Phi(-2)+[1-Phi(2)]=Phi(-2)+Phi(-2)=2Phi(-2)$

cvd


Per favore, in questo forum è richiesto che le formule vengano scritte usando l'apposito compilatore

grazie
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5678 di 5838
Iscritto il: 23/04/2015, 14:13
Località: in provincia di Varese


Torna a Statistica e probabilità

Chi c’è in linea

Visitano il forum: Nessuno e 16 ospiti