Passa al tema normale
Discussioni su programma di analisi 1 e 2: numeri complessi, calcolo di una o più variabili reali, equazioni differenziali ordinarie.

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

[Sistemi Dinamici] Stabilità

19/05/2017, 15:58

Salve a tutti,

Ho il seguente esercizio :

Dato il sistema $x(k+1)=1+0.1x^2 (k)$, determinare i punti di equilibrio e discutere la loro stabilità.

I punti di equilibrio si ottengono imponendo :

$\overline{x}=1+0.1\overline{x}^(2)$

da cui

$\overline{x_1}=sqrt(15)-5$ , $\overline{x_2}=5-sqrt(15)$.
Ora come faccio a discuterne la stabilità?
Avevo pensato di utilizzare una funzione di Lyapunov ed i relativi Teoremi,ma ciò vale quando il punto di equilibrio è l'origine.
Qualcuno potrebbe aiutarmi ?

Grazie

Re: [Sistemi Dinamici] Stabilità

20/05/2017, 10:39

Ricontrolla il valore di $\overline{x_1}$; nei teoremi di Lyapunov non è importante chi sia il punto di equilibrio, puoi provare a usarli anche in questo caso.

Re: [Sistemi Dinamici] Stabilità

22/05/2017, 15:22

Ciao,
La determinazione dei punti di equilibrio l'ho fatta in MATLAB.
L'ho risolto alla fine con il metodo indiretto di Lyapunov e la mia domanda in realtà era : è possibile risolvere questo esercizio anche mediante il metodo diretto di Lyapunov,ossia scegliendo una funzione quadratica e verificando se sono soddisfatti i relativi teoremi,oppure tale metodo si applica solo quando si ha a che fare con un punto di equilibrio nell'orgine?

Re: [Sistemi Dinamici] Stabilità

24/05/2017, 16:27

La risposta alla tua domanda è sì: il metodo diretto di Lyapunov si può applicare in un punto di equilibrio qualsiasi, anche diverso dall'origine.
Rispondi al messaggio