esercizio

Messaggioda cri98 » 12/01/2019, 01:38

salve a tutti,
in questo esercizio:
supposto che per x appartenente all'intervallo $ [2,4]$ sia: $6<=fprimeprime(x)<=8, fprime(2)=4 $e $f(2)=-5 $
$[1] f(3)>=2$
$[2] f(3)>=3$
$3[]f(3)>=4$
$[4]f(3)>=5$


vorrei che mi aiutaste a capire quale teorema o nozione devo utilizzare per affrontare questa tipologia di esercizio.
premetto che non saprei da dove cominciare....

Grazie!
Ultima modifica di cri98 il 12/01/2019, 11:01, modificato 1 volta in totale.
cri98
Junior Member
Junior Member
 
Messaggio: 172 di 277
Iscritto il: 30/04/2018, 17:18

Re: esercizio

Messaggioda anto_zoolander » 12/01/2019, 05:23

Ciao!

Non si capisce cosa tu voglia dimostrare
Error 404
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3605 di 4206
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Re: esercizio

Messaggioda cri98 » 12/01/2019, 11:03

ciao anto_zoolander,

hai ragione mancava una parte dell'esercizio

Grazie :smt023 :smt023
cri98
Junior Member
Junior Member
 
Messaggio: 173 di 277
Iscritto il: 30/04/2018, 17:18

Re: esercizio

Messaggioda gugo82 » 12/01/2019, 12:19

Cri, è lo stesso del precedente... Se hai capito come si ragiona in quello, dovresti riuscire a capire come cavartela in questo.
Prova.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20410 di 22155
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: esercizio

Messaggioda cri98 » 12/01/2019, 12:23

ciao gugo82,

devo utilizzare sempre Lagrange o utilizzare anche Rolle?
come mi muovo con la derivata seconda?
Grazie!
cri98
Junior Member
Junior Member
 
Messaggio: 174 di 277
Iscritto il: 30/04/2018, 17:18

Re: esercizio

Messaggioda Bokonon » 12/01/2019, 13:03

cri98 ha scritto:come mi muovo con la derivata seconda?

La derivata seconda è la derivata prima della derivata prima :D
Prova a ragionare come hai già fatto risalendo le derivate.
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 555 di 1481
Iscritto il: 25/05/2018, 21:22

Re: esercizio

Messaggioda cri98 » 17/01/2019, 19:17

salve a tutti.

io pensavo per prima cosa di considerare l'intervallo$ [2,3]$
quindi ottengo che$ b-a=3-2=1$

a)$ f(3)>=2$

$ (f(b)-f(a))/(b-a)=( 2-(-5))/1= 7 $ questo mi farebbe presumere che la soluzione $ f(3)>=2$ non sia accettabile, perché $ fprime(2)=4$
il mio dubbio è il seguente: nell'esercizio precedente si considerava che $ f primo(x)=$ numero;
mentre in questo caso ho $ f(2)$ =numero.
il procedimento che sto effettuando è corretto? c'è da fare qualche modifica?
altro dubbio:
come faccio avendo la derivata prima$ f prime(2)=4 $ a calcolare la derivata seconda operativamente?

Grazie a tutti :smt023
cri98
Junior Member
Junior Member
 
Messaggio: 180 di 277
Iscritto il: 30/04/2018, 17:18

Re: esercizio

Messaggioda gugo82 » 21/01/2019, 02:03

cri98 ha scritto:supposto che per x appartenente all'intervallo $ [2,4]$ sia: $6<=fprimeprime(x)<=8, fprime(2)=4 $e $f(2)=-5 $
$[1] f(3)>=2$
$[2] f(3)>=3$
$3[]f(3)>=4$
$[4]f(3)>=5$

Il testo non è completo, in quanto bisogna ipotizzare che $f$ sia una funzione derivabile due volte in un intervallo che contiene i punti $2$ e $4$.

Detto ciò, la formula di Taylor al primo ordine col resto nella forma di Lagrange assicura che:
\[
\begin{split}
f(3) & = f(2) + f^\prime (2)\cdot (3-2) + \frac{1}{2}\ f^{\prime \prime} (\xi) \cdot (3-2)^2 \\
&= -5 + 4 + \frac{1}{2}\ f^{\prime \prime} (\xi) \\
&= -1 + \frac{1}{2}\ f^{\prime \prime} (\xi) \;;
\end{split}
\]
tenendo presenti le limitazioni soddisfatte dalla derivata seconda, otteniamo:
\[
2 = -1+3 \leq f(3) \leq -1 + 4 = 3
\]
da cui segue che le alternative proposte sono errate, perché quella giusta vorrebbe essere la [1] e però non si può a priori escludere che $f(3)=3$ soddisfacendo anche la [2].
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20553 di 22155
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: esercizio

Messaggioda cri98 » 21/01/2019, 12:52

grazie gugo82
finalmente ho capito come approcciarmi a questo esercizio :D :D :D .
procedo con un'altro esempio:
sia$ x $ in $ [2,4] f(2)=3, fprime(2)=1$ e $1<=fprimeprime(x)<=2$ dire quale è la disuguaglianza corretta:
$[1]f(3)<=6$
$[2]f(3)<=3$
$[3]f(3)<=5$
$[4]f(4)<=6$

formula di Taylor al primo ordine col resto nella forma di Lagrange:

$f(3)=f(2)+fprime(2)(b-a)+(fprimeprime(k))/2(b-a)^2$

$f(3)=3+1(3-2)+(fprimeprime(k))/2(3-2)^2$

$f(3)=3+1+(fprimeprime(k))/2$


$4+1/2<=f(3)<=3+1+1$
$9/2<=f(3)<=5$

quindi la risposta corretta è $[3]f(3)<=5$

grazie mille :smt023 :smt023 :smt023
cri98
Junior Member
Junior Member
 
Messaggio: 197 di 277
Iscritto il: 30/04/2018, 17:18


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: paolo.math e 25 ospiti