Dimostrazione riduzione di un’equazione scalare di ordine n ad un sistema di n equazioni del I ordine per n=3
Inviato: 12/01/2019, 22:50
Buonasera, vorrei dimostrare il seguente lemma per il caso \(\displaystyle n=3 \). Qualcuno può aiutarmi?
\(\displaystyle y^n(t)=f(t,y,y',y'',...,y^{n-1}) \) equazione differenziale di ordine n in forma normale nella funzione scalare incognita \(\displaystyle y(t) \) può sempre essere scritta nella forma di un sistema, ponendo \(\displaystyle y_1=y, y_2=y' ... y_n=y^{n-1}\), allora
\begin{cases}
y'_1 = y_2 \\
y'_2 = y_3 \\
. \\
. \\
. \\
y'_n = f_n(t,y_1,y_2,...,y_n)
\end{cases}
\(\displaystyle y^n(t)=f(t,y,y',y'',...,y^{n-1}) \) equazione differenziale di ordine n in forma normale nella funzione scalare incognita \(\displaystyle y(t) \) può sempre essere scritta nella forma di un sistema, ponendo \(\displaystyle y_1=y, y_2=y' ... y_n=y^{n-1}\), allora
\begin{cases}
y'_1 = y_2 \\
y'_2 = y_3 \\
. \\
. \\
. \\
y'_n = f_n(t,y_1,y_2,...,y_n)
\end{cases}