zaro90 ha scritto:Non capisco bene la domanda.
ma da quanto so se derivo due volte la soluzione e poi sostituisco i valori ottenuti nellequazione differenziale dovrei ottenere un eguaglianza.
Giusto il principio, ma devi sapere che questo viene fuori dalla
definizione di soluzione.
Una funzione $bar(y) : I -> RR$ definita nell’intervallo aperto non vuoto $I subseteq RR$ è una soluzione dell’equazione differenziale $y^{\prime \prime}(t) + 2 y(t) = f(t)$ (o, nel caso generale, $L[y(t)] = f(t)$ con $L$ operatore differenziale del secondo ordine) nell’intervallo $I$ se e solo se risulta:
\[
\bar{y}^{\prime \prime} (t) + 2 \bar{y}(t) = f(t)\qquad \text{(o, in generale, } L[\bar{y}(t)] = f(t)\text{)}
\]
per ogni $t in I$.
zaro90 ha scritto:Questo si ottiene facilmente con la soluzione y(t) =2t^2 + t -2 di cui la derivata seconda è = 4 e quindi sostituendo nell equazione si ha 4+4t^2+2t-4=4t^2+2t e si verifica l'eguaglianza.
Non rieco a fare lo stesso con la soluzione prpostami dal prof.
Perché non riesci a fare lo stesso?
Chi te lo impedisce?