Passa al tema normale
Discussioni su programma di analisi 1 e 2: numeri complessi, calcolo di una o più variabili reali, equazioni differenziali ordinarie.

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

Funzione integrale infinita o infinitesima

23/06/2019, 12:26

Ciao a tutti, se in un esercizio mi viene chiesto di calcolare la parte principale di una funzione per x che tende ad un determinato valore, significa che devo confrontarla con l'infinito o infinitesimo campione elevato alla alfa(numero reale) e vedere per quali alfa il limite esiste finito.
Il mio problema però è che non riesco a capire come vedere se per x che tende ad un certo valore la funzione integrale è infinita o infinitesima e quindi non so con qualche campione confrontarla.

Re: Funzione integrale infinita o infinitesima

23/06/2019, 13:51

Ciao!

Posta un esempio e lavoriamo su quello.

Re: Funzione integrale infinita o infinitesima

23/06/2019, 14:05

Ok, riporto il testo ed il mio svolgimento:

Sia $F(x) = ∫(ln(1+t)-sin(t))/(t)dt$ con estremo inferiore 1 ed estremo superiore x.

1)Provare che F è continua nel suo dominio $[-1,+∞)$
2)Calcolare la parte principale di F(x) per $x -> +∞$

1)Essendo f(t) continua e quindi integrabile(secondo Riemann) in [-1,+∞) allora F(x) è ivi continua.(penso basti questo per dimostrarlo ma non ne sono sicuro).
2)Per calcolare la parte principale di F(x) per x che tende a $+∞$ devo prima vedere per quali $k$ appartenenti ad R esiste finito il limite per x che tende a $+∞$ di $F(x)/(u(x)^k)$. Dove $u(x)$ è l'infinito o infinitesimo campione e sarà uguale a $1/x$ se F(x) è infinitesima(cioè se il limite per x che tende a $+∞$ di F(x) va a 0) o $x$ se F(x) è infinita.
Come faccio però a capire se F(x) è infinita o infinitesima?

Re: Funzione integrale infinita o infinitesima

23/06/2019, 14:15

In realtà ci sono due problemi per la continuità;

- in $x=0$ si annulla il denominatore
- in $x=-1$ diverge il logaritmo

Hai studiato il comportamento della funzione in questi punti?

Re: Funzione integrale infinita o infinitesima

23/06/2019, 14:23

Per x che tende a 0 sia da destra che da sinistra la funzione va a 0 e quindi in x = 0 non dovrebbero esserci problemi di discontinuità. Invece il punto x = -1 in effetti andrebbe tolto, avrei quindi che F(x) è continua in $(-1,+∞)$. Potrebbe andare?

Re: Funzione integrale infinita o infinitesima

23/06/2019, 14:58

Si fino a qui va bene poiché in $x=0$ la funzione può essere estesa per continuità; resta soltanto da verificare che la funzione integrale in $x=-1$ ammetta limite.

Questa sequenza di cose ti porta a risolvere il punto $1$.

Re: Funzione integrale infinita o infinitesima

23/06/2019, 15:15

In x=-1 ammette limite poichè è un infinita di ordine minore di alfa per qualche alfa minore di 1, quindi converge l'integrale.
Ma quindi in generale una funzione integrale è continua nei punti in cui la funzione integranda è integrabile e nei punti in cui converge?(-1 in questo caso)

Re: Funzione integrale infinita o infinitesima

23/06/2019, 23:26

In generale se una funzione è integrabile su un certo intervallo allora la funzione integrale è continua in quell'intervallo; se la funzione integrale ammette limite agli estremi di un intervallo allora essa può essere estesa ad una funzione continua.

Questo perché sostanzialmente parti dalla locale integrabilità di una funzione e vedi fino a dove ti puoi spingere usando i limiti.

Re: Funzione integrale infinita o infinitesima

24/06/2019, 08:33

Grazie!
Invece per il secondo punto?

Re: Funzione integrale infinita o infinitesima

25/06/2019, 01:54

Scusa se rispondo lentamente ma sono sotto esami :-D

Comunque per il secondo $f(t)=(log(1+t)-sin(t))/t$

Se consideri $1/(tf(t))$ questa quantità tende a $0$ quindi definitivamente $1/t<f(t)$ da cui integrando membro a membro si ottiene che la funzione integrale $F(x)$ diverge

a questo punto ha senso confrontare $F(x)$ con qualcosa che diverge ovvero un infinito campione del tipo $x^a$ con $a>0$

Nel calcolo di $lim_(x->+infty)(F(x))/x^a$ hai una forma indeterminata e puoi utilizzare utilizzare un famoso teorema per sbarazzarti di quell’integrale.
Rispondi al messaggio


Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010.
©2000— Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.