Equazione Goniometrica "particolare"

Messaggioda SalvaMat » 29/03/2020, 09:36

Ciao a tutti,
mi sono imbattuto nella seguente equazione goniometrica, che si può scrivere in uno dei due modi:

$A' sin k_f omega t - B' cos k_f omega t = 2 cos(omega t - phi_i)$

oppure:

$C' sin(k_f omega t - gamma) = 2 cos(omega t - phi_i)$

in cui:

$t$ è la variabile
$omega$ è una costante positiva.
$k_f$ è una costante positiva.
$A'$ e $B'$ sono costanti, appartengono ad $RR$ e sono diverse da zero.
$C'$ invece è una costante positiva.

Dovrei risolverla in $t$ o $omega t$ ma purtroppo non riesco a ricondurla a nessun caso elementare di risoluzione. Ho cercato anche in internet ma non ho trovato nulla.
Potete darmi una mano?

Grazie 1000
Ultima modifica di gugo82 il 29/03/2020, 14:36, modificato 1 volta in totale.
Motivazione: Inserita una formula al posto di una foto, sistemate le altre formule ed il post.
SalvaMat
Starting Member
Starting Member
 
Messaggio: 1 di 8
Iscritto il: 29/03/2020, 09:15

Re: Equazione Goniometrica "particolare"

Messaggioda gugo82 » 29/03/2020, 14:38

Da dove viene fuori il problema?
Sicuro ti serva risolvere esplicitamente l'equazione?
Non ti basta sapere che la soluzione esiste e stimarla in qualche modo?
Did you exchange
A walk on part in the war
For a lead role in a cage? (Roger Waters)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23568 di 24300
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Equazione Goniometrica "particolare"

Messaggioda SalvaMat » 29/03/2020, 15:12

Ciao,
il problema viene fuori da un testo, il quale portando avanti un procedimento si imbatte in questa equazione.Dice che esistono due soluzioni reali ma non risolve l'equazione e va avanti col discorso portando a termine il procedimento e graficando i risultati. Ovviamente non riuscendo io risolvere l'equazione, non riesco ne ad utilizzare il procedimento, ne a validare i grafici.
Aggiungo che l'equazione mostrata è corretta perché ho rifatto tutti i passaggi del testo e mi trovo perfettamente.
Mi potrebbe anche bastare solo stimare le soluzioni, ma comunque mi piacerebbe anche sapere se è possibile risolverla analiticamente.

Grazie


P.S.: Questo ulteriore poscritto vuole chiarire da dove viene fuori il problema.
Ho una equazione differenziale di secondo grado non omogenea a coefficienti costanti:

$ y''+omega _f^2*y=I_M*omega _f^2*sin(omega t-varphi _i) $

La soluzione è:

$ y=Acos(omega _ft)+Bsin(omega _ft)+c_1sin(omega t-varphi _i) $

nel testo si pone $ kappa _f=omega _f/omega $ e dunque $ c_1=I_M kappa _f^2/(kappa _f^2-1) $

e $ A $ e $ B $ sono costanti che si ricavano imponendo le condizioni iniziali.

Lo scopo del procedimento è quello di calcolare il massimo $ Delta y $ definito come:
$ Delta y = y_(max)-y_(min) $

Per fare ciò il testo suggerisce di derivare $ y $ da cui con l'opportuna definizione delle costanti $ A' $ e $ B' $ si ottiene l'equazione trigonometrica del primo post.

La risoluzione dell'equazione trigonometrica del primo post mi permette di ricavere gli istanti $ t $ nei quali $ y $ è massima e minima e pertanto giungere al calcolo di $ y_(max) $ ed $ y_(min) $.
Ultima modifica di gugo82 il 29/03/2020, 18:16, modificato 1 volta in totale.
Motivazione: Uniti due post consecutivi.
SalvaMat
Starting Member
Starting Member
 
Messaggio: 2 di 8
Iscritto il: 29/03/2020, 09:15

Re: Equazione Goniometrica "particolare"

Messaggioda SalvaMat » 15/04/2020, 21:39

Ciao a tutti,
ho scritto anche all'autore del testo per avere il metodo/procedimento di risoluzione dell'equazione, ma ad oggi non ho avuto risposta. Volendo ottenere invece soluzioni approssimate come si potrebbe procedere?
Grazie mille
SalvaMat
Starting Member
Starting Member
 
Messaggio: 3 di 8
Iscritto il: 29/03/2020, 09:15

Re: Equazione Goniometrica "particolare"

Messaggioda Masaki » 13/05/2020, 19:40

Le condizioni iniziali sono particolari (tipo posizione iniziale nulla o velocità iniziale nulla) o generiche? Il rapporto tra $\omega_f$ e $\omega$ è intero?
Masaki
Starting Member
Starting Member
 
Messaggio: 34 di 46
Iscritto il: 19/08/2018, 20:43

Re: Equazione Goniometrica "particolare"

Messaggioda SalvaMat » 13/05/2020, 21:03

Ciao Masaki,
il rapporto tra $ omega _f $ ed $ omega $ può essere qualsiasi; ma le condizioni iniziali sfruttano una condizione di periodicità della forma d'onda $ y $ ,in particolare si hanno le seguenti relazioni:
$ w=(2pi)/T $
$ y $ è periodica di periodo $ T_i $ e sussiste la seguente relazione: $ T_i=T/6 $
inoltre $ y $ è legata ad un'altra funzione $ u $ tale che $ u=U_S - Ldy/dt $ dove anche per $ u $ sussiste la relazione: $ u(0)=u(T_i) $

Le costanti $ A $ e $ B $ si ricavano imponendo $ y(0)=y(T_i) $ e $ u(0)=u(T_i) $;

$ U_S $ ed $ L $ sono due costanti positive.

Fammi sapere se è tutto chiaro.
Grazie1000
SalvaMat
Starting Member
Starting Member
 
Messaggio: 7 di 8
Iscritto il: 29/03/2020, 09:15

Re: Equazione Goniometrica "particolare"

Messaggioda Masaki » 14/05/2020, 11:00

Scusami sto facendo parecchia fatica a capire cosa stai scrivendo, puoi postare il testo dell'esercizio per favore?
Masaki
Starting Member
Starting Member
 
Messaggio: 35 di 46
Iscritto il: 19/08/2018, 20:43

Re: Equazione Goniometrica "particolare"

Messaggioda SalvaMat » 15/05/2020, 14:53

Spero siano chiare le info che ti ho inviato in pvt.

Grazie ancora
SalvaMat
Starting Member
Starting Member
 
Messaggio: 8 di 8
Iscritto il: 29/03/2020, 09:15


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 16 ospiti