Risolvere $ z^2 = \overline{z^2} $

Messaggioda cidra » 24/05/2020, 12:28

Ciao a tutti. Come da titolo devo risolvere questa equazione complessa: $ z^2 = \overline{z^2} $
Io l'avrei già risolta usando due approcci diversi ma vorrei essere sicuro della loro correttezza.

1. Questo è quello più ovvio. Pongo $z=x+iy$. Mi troverò quindi con l'equazione $x^2-y^2+2ixy=x^2-y^2-2ixy$ che portando tutto al primo membro diventa $4ixy=0$. Questa equazione può essere vista come $0+4ixy=0+0i$ e dato che due numeri complessi sono equivalenti quando hanno rispettivamente uguale parte reale e immaginaria. L'uguaglianza della parte reale è sempre soddisfatta, dobbiamo quindi porre solamente $4xy=0$ che ha due soluzioni distinte: $x=0$ e $y=0$.

2. Questa l'ho fatta più "di testa mia", quindi potrei aver sbagliato di grosso :oops:
Siccome i numeri complessi godono della proprietà $z - \overline{z} = 2\Im(z)$ allora posso portare il complesso coniugato al primo membro e applicare la proprietà:
$ z^2 - \overline{z^2}= 0 = 2\Im(z^2) $
Si ha quindi che la parte immaginaria di $z^2$ è $0$ e anche il suo complesso coniugato ha parte immaginaria uguale a $0$. Sono entrambi numeri reali! Pertanto si equivalgono sempre e posso scrivere
$z^2 - \overline{z^2} = 0 \forall z \in \mathbb{R} $ (Metto $\mathbb{R}$ perchè in questo caso non ci sono soluzioni complesse, non so quanto sia giusta come notazione..)

Vanno bene come soluzioni? È difficile capire quando un esercizio è svolto bene con i numeri complessi, è un argomento il quale mi sono introdotto da pochissimo! Vi ringrazio in anticipo per la vostra disponibilità
cidra
Starting Member
Starting Member
 
Messaggio: 8 di 9
Iscritto il: 15/11/2017, 15:15

Re: Risolvere $ z^2 = \overline{z^2} $

Messaggioda gugo82 » 24/05/2020, 13:04

Ma sfruttare le scomposizioni che si studiano in prima superiore non si usa più?
Voglio dire che1 $z^2 = bar(z)^2 <=> z^2 - bar(z)^2 = 0 <=> (z-bar(z)) * (z+bar(z)) = 0$ e via così...

Oppure, da $z^2 = bar(z^2)$ segue che $z^2$ è reale e via così...

Note

  1. Osserva che $bar(z^2) = bar(z)^2$, per una proprietà fondamentale del coniugio.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 23926 di 24337
Iscritto il: 12/10/2007, 23:58
Località: Napoli

Re: Risolvere $ z^2 = \overline{z^2} $

Messaggioda cidra » 24/05/2020, 13:36

gugo82 ha scritto:Ma sfruttare le scomposizioni che si studiano in prima superiore non si usa più?
Osserva che $bar(z^2) = bar(z)^2$, per una proprietà fondamentale del coniugio.

L'avrei usata volentieri se non mi fosse sfuggita questa piccola proprietà da te menzionata :lol: Grazie!
cidra
Starting Member
Starting Member
 
Messaggio: 9 di 9
Iscritto il: 15/11/2017, 15:15


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: ZfreS e 46 ospiti