Dimostrazione teorema di Cramer

Messaggioda *Vince 15 » 26/01/2004, 17:45

Io ho capito come funziona questo teorema e so quando utilizzarlo, però non mi è chiara la dimostrazione.

Ax=b

A è la matrice dei coefficienti, x è il vettore colonna delle incognite e b è il vettore colonna dei termini noti.

x = A^-1 * b

E fin qui ci sono. Ora non capisco perchè questo può scriversi anche come

xi= detAi/detA

dove Ai è la matrice dei coefficienti in cui la colonna i è stata sostituita dalla colonna b dei termini noti.
Ho provato a fare i conti, ma non mi torna.
Chi mi aiuta?

Grazie
*Vince 15
Starting Member
Starting Member
 
Messaggio: 1 di 4
Iscritto il: 26/01/2004, 17:40
Località: Canada

Messaggioda karl » 26/01/2004, 21:31

Una risposta generalizzata e' difficile da postare
(poi se qualcuno ci riesce tanto meglio).
Mi limitero' quindi a darti un'idea nel caso molto
particolare di un sistema con due sole equazioni:
a11*x1+a12*x2=b1
a21*x1+a22*x2=b2.
Cominciamo col calcolare l'inversa della matrice dei coeff.
Come si sa,essa si ottiene:
1)sostituendo ad ogni suo elemento il corrispondente complemento algebrico diviso per il determinante della matrice(supposto non nullo)
2)facendo la trasposta della matrice cosi' ottenuta.
Nel caso nostro si ottiene la matrice:
+a22/detA......-a12/detA
-a21/detA......+a11/detA
Facciamo ora il prodotto, righe per colonne, di questa
matrice per la colonna dei termini noti ed otteniamo
la matrice (ad una sola colonna):

(a22*b1-a12*b2)/detA
(-a21*b1+a11*b2)/detA

La prima riga si puo' interpretare come il determinante cosi' fatto:
b1.......a12
b2.......a22
(il tutto diviso detA)
e questo determinante e' proprio x1.
Analogamente per x2:
a11.......b1
a21.......b2
(il tutto diviso detA).
Cio' prova il teorema;non ti sara' difficile generalizzare
il procedimento su questa base.
karl.













Modificato da - karl il 26/01/2004 20:35:20
karl
 

Messaggioda *Vince 15 » 26/01/2004, 22:00

Anche io ho fatto così, infatti e sono arrivato al punto:

<BLOCKQUOTE id=quote><font size=1 face="Verdana, Arial, Helvetica" id=quote>citazione:<hr height=1 noshade id=quote>(a22*b1-a12*b2)/detA
(-a21*b1+a11*b2)/detA<hr height=1 noshade id=quote></BLOCKQUOTE id=quote></font id=quote><font face="Verdana, Arial, Helvetica" size=2 id=quote>

Non capisco cos'hai fatto dopo. Mi rispiegheresti questo punto:

<BLOCKQUOTE id=quote><font size=1 face="Verdana, Arial, Helvetica" id=quote>citazione:<hr height=1 noshade id=quote>La prima riga si puo' interpretare come il determinante cosi' fatto:
b1.......a12
b2.......a22
(il tutto diviso detA)
e questo determinante e' proprio x1.
Analogamente per x2:
a11.......b1
a21.......b2
(il tutto diviso detA).<hr height=1 noshade id=quote></BLOCKQUOTE id=quote></font id=quote><font face="Verdana, Arial, Helvetica" size=2 id=quote>

Ti ringrazio ;)
*Vince 15
Starting Member
Starting Member
 
Messaggio: 2 di 4
Iscritto il: 26/01/2004, 17:40
Località: Canada

Messaggioda *Vince 15 » 26/01/2004, 22:20

Ahhh, ho capito da solo.

Grazie ancora. :D
*Vince 15
Starting Member
Starting Member
 
Messaggio: 3 di 4
Iscritto il: 26/01/2004, 17:40
Località: Canada

Messaggioda Valerio Capraro » 09/02/2004, 21:30

resuscito questo post per darti la dimostrazione completa del teorema di Cramer.

come hai detto, si ha x = A^(-1)b; ora, si dimostra che l'inversa di A è uguale a Agg(A)/det(A) dove la matrice aggiunta è la trasposta della matrice che si ottiene sostituendo ogni elemento a(ij) col suo complemento algebrico A(ij). quindi abbiamo x = Agg(A)b/det(A), che equivale ad:

| A(11)b(1) + A(21)b(2) + ......... + A(n1)b(n) |
1 | A(12)b(1) + A(22)b(2) + ......... + A(n2)b(n) |
x = ______ | ...... ..... ..... |
| |
det A | |
| |
| A(1n)b(1) + A(2n)b(2) + ......... + A(nn)b(n) |

osserviamo che nella generica i-esima riga c'è det(A(i)), dove A(i) è la matrice che si ottiene dalla A sostituendo l' i-esima colonna con la colonna dei termini noti; si ha pertanto:

| det A(1) |
1 | det A(2) |
x = _______ | ...... |
| |
det A | |
| det A(n) |

che equivale alla tesi.
ciao, ubermensch
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 40 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda Valerio Capraro » 09/02/2004, 21:31

oddio perchè me l'ha scritto così!!!!
pazienza, sarà per la prossima volta..
Valerio Capraro
Advanced Member
Advanced Member
 
Messaggio: 41 di 2528
Iscritto il: 04/02/2004, 00:58
Località: Southampton (UK)

Messaggioda karl » 09/02/2004, 21:41

Ubermensch,ci sei cascato anche tu!Immagino la fatica che hai fatto
per allineare il tutto per bene.Bel risultato davvero!.
Non ti scoraggiare,alla prossima.
karl.
karl
 


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 21 ospiti