Pagina 1 di 1

esame di algebra lineare

MessaggioInviato: 17/05/2019, 16:33
da dr97
salve ragazzi, potreste darmi una mano con questo esercizio?
Dato un campo Z7 trovare l'elemento $ x=3^-1*(2-5) $ .
non ho ben capito come svolgere la differenza tra parentesi.

Re: esame di algebra lineare

MessaggioInviato: 17/05/2019, 18:14
da gugo82
E cosa c’entrano le matrici?


*** EDIT: Ecco, ora ha senso.

La differenza è da intendersi modulo $7$. Insomma, $2-5 = -3 equiv_7 ?$.


*** AGGIUNTA: Ovviamente, $3^(-1) equiv_7 5$ poiché infatti $3*5=15 equiv_7 1$, e d’altra parte $2-5=-3 equiv_7 4$; dunque $3^(-1)*(2-5) = 5*4 =20 equiv_7 6$.

Re: esame di algebra lineare

MessaggioInviato: 18/05/2019, 18:38
da dr97
grazie mille gugo87,potresti spiegarmi come sei giunto a (2-5)=>4 ?
ti ringrazio in anticipo

Re: esame di algebra lineare

MessaggioInviato: 19/05/2019, 00:57
da anto_zoolander
considera che $0_(ZZ_7)=[0]=[7]$ e sommalo a $[-3]$

Re: esame di algebra lineare

MessaggioInviato: 19/05/2019, 01:52
da gugo82
dr97 ha scritto:potresti spiegarmi come sei giunto a (2-5)=>4 ?

Intendi giunto a $-3 equiv_7 4$?
Contando sulle dita modulo $7$.

(Non è che, stando all’università, le tecniche elementari non valgono più…)

Re: esame di algebra lineare

MessaggioInviato: 19/05/2019, 10:07
da dr97
grazie mille ad entrambi!!!