Esercizio determinare una circonferenza

Messaggioda giulio0 » 02/06/2019, 18:17

Fissato un riferimento cartesiano di un piano euclideo, si considerino la retta $r : 2x + 3y − 5 = 0$ e il
punto $A(2, −1)$.
(ii) Determinare la circonferenza che sia tangente a r e abbia centro in A.

Salve per questo esercizio avevo pensato di fare così:

Riscrivo in forma parametrica la retta:

$ { ( x = -5 - 3/2t ),( y = t ):} $ con direzione $P( -3/2, 1)$

poi mi trovo tramite il prodotto scalare quella retta che è perpendicolare a $r$ quindi $P'( 1, 3/2)$, la riscrivo in forma cartesiana:

${( x = t), (y = 3/2t) :} => 3/2x + y = 0$

Metto a sistema con l'altra retta per vedere dove intersecano e trovo il punto $B( -2, -3)$, infine sostituisco il punto $B$ ed $A$ nella formula della retta passante per due punti e trovo $ y = 2 $. Adesso dovrei avere la retta perpendicolare alla retta data che interseca per $B$ ed $A$ quindi il raggio del cerchio. Per trovarmi la sua circonferenza come dovrei fare?


Pensiate sia giusto?
giulio0
Junior Member
Junior Member
 
Messaggio: 111 di 152
Iscritto il: 29/01/2018, 22:54

Re: Esercizio determinare una circonferenza

Messaggioda Bokonon » 02/06/2019, 20:34

giulio0 ha scritto:Pensiate sia giusto?


No
Fai troppi errori di calcolo Giulio. Il ragionamento è ok, i calcoli no.
Il modo più veloce per risolvere il problema è usare la formula della distanza punto-retta
$d(A,r)=|a*x_A+b*y_A+c|/sqrt(a^2+b^2)=|2*2+3*(-1)-5|/sqrt(2^2+3^2)=4/sqrt(13)=raggio$

giulio0 ha scritto:Riscrivo in forma parametrica la retta:

$ { ( x = -5 - 3/2t ),( y = t ):} $ con direzione $P( -3/2, 1)$

Casomai è $ { ( x = 5/2 - 3/2t ),( y = t ):} $
La direzione comunque è corretta ma in questi casi semplificala. Una direzione moltiplicata per uno scalare resta sempre la medesima direzione, quindi moltiplicando per -2 abbiamo $P=(3,-2)$ che è anche esteticamente più bella, no?
Una direzione perpendicolare è $(2,3)$

giulio0 ha scritto:${( x = t), (y = 3/2t) :} => 3/2x + y = 0$

Di nuovo sbagliato. Quella è la retta che passa per l'origine...non per A.
La retta è $ ( ( x ),( y ) )= s( ( 2 ),( 3 ) )+( ( 2 ),( -1 ) ) $ quindi ${( x = 2s+2), (y = 3s-1) :}$ da cui $3x-2y-8=0$

Apprezzo che tu voglia usare l'algebra lineare ma si poteva arrivare al risultato con la classica $y-y_0=m(x-x_0)$
Nel nostro caso $y+1=3/2(x-2)$

Facendo il sistema ottieni il punto $B=(34/13,-1/13)$ e $d(A,B)=4/sqrt(13)$

Per scrivere l'equazione della circonferenza usa la formula $(x-x_0)^2+(y-y_0)^2=r^2$ che si legge come "il luogo geometrico composto da tutti i punti $(x,y)$ la cui distanza al quadrato da un punto detto centro $(x_0,y_0)$ è fissa"

$(x-2)^2+(y+1)^2=16/13$
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1348 di 1542
Iscritto il: 25/05/2018, 21:22


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 14 ospiti