Determinare sistema lineare avente S come insieme di soluzioni

Messaggioda Anzu » 06/06/2019, 18:54

Salve, qualcuno potrebbe aiutarmi con questo esercizio:

Sia \(\displaystyle S = {(1,2,0,3) + z | z ∈ 〈(1,-1,2,1), (1,5,-2,5)〉} \)

Si stabilisca se S è un sottospazio vettoriale di \(\displaystyle R^4 \) e si determini, se possibile, un sistema lineare omogeneo avente S come insieme di soluzioni.

Grazie.
Anzu
Starting Member
Starting Member
 
Messaggio: 1 di 3
Iscritto il: 06/06/2019, 18:25

Re: Determinare sistema lineare avente S come insieme di soluzioni

Messaggioda gugo82 » 06/06/2019, 18:56

Idee tue?
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 21629 di 22377
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Determinare sistema lineare avente S come insieme di soluzioni

Messaggioda Anzu » 06/06/2019, 23:28

gugo82 ha scritto:Idee tue?


Allora il teorema di struttura dei sistemi lineare (o almeno così lo chiama il mio libro) mi dice che:

Se Ax = b è un sistema di m equazioni in n incognite che ammette almeno una soluzione, allora l'insieme delle soluzione del sistema è : \(\displaystyle S = \lbrace v + z | z ∈ kerA \rbrace \)

Quindi vogliamo trovare l'insieme degli elementi \(\displaystyle (x,y,z,t) ∈ S \) tali che:
\(\displaystyle (x,y,z,t) = (1,2,0,3) + z \) con \(\displaystyle z ∈⟨(1,−1,2,1),(1,5,−2,5)⟩ \)

ma da qui come proseguo ? come faccio a capire se S è un sottospazio vettoriale di \(\displaystyle R^4 \) ?
Anzu
Starting Member
Starting Member
 
Messaggio: 2 di 3
Iscritto il: 06/06/2019, 18:25

Re: Determinare sistema lineare avente S come insieme di soluzioni

Messaggioda Bokonon » 07/06/2019, 17:38

Lascia stare il sistema, non c'entra nulla.
Ti ha dato uno spazio ben definito ovvero l'insieme di tutte le combinazioni di una base formata da due vettori a cui ci si somma un terzo vettore fisso.
Quindi è l'insieme di tutti i vettori $(x,y,z,w)$ di $R^4$ tali che:
$ S:{( ( x ),( y ),( z ),( w ) )= alpha( ( 1 ),( -1 ),( 2 ),( 1 ) )+beta( ( 1 ),( 5 ),( -2 ),( 5 ) )+( ( 1 ),( 2 ),( 0 ),( 3 ) ) $
Che cos'è?
E qual è la definizione di spazio vettoriale?
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1364 di 1551
Iscritto il: 25/05/2018, 21:22

Re: Determinare sistema lineare avente S come insieme di soluzioni

Messaggioda Anzu » 08/06/2019, 13:17

Bokonon ha scritto:Quindi è l'insieme di tutti i vettori $(x,y,z,w)$ di $R^4$ tali che:
$ S:{( ( x ),( y ),( z ),( w ) )= alpha( ( 1 ),( -1 ),( 2 ),( 1 ) )+beta( ( 1 ),( 5 ),( -2 ),( 5 ) )+( ( 1 ),( 2 ),( 0 ),( 3 ) ) $
Che cos'è?

Il sistema lineare avente S come soluzione ?

E per vedere se S è un sottospazio vettoriale di \(\displaystyle R^4 \) devo verificare le proprietà dei sottospazi, cioè contiene il vettore nullo, è chiuso rispetto alla somma ed chiuso rispetto al prodotto per scalari ?
Anzu
Starting Member
Starting Member
 
Messaggio: 3 di 3
Iscritto il: 06/06/2019, 18:25

Re: Determinare sistema lineare avente S come insieme di soluzioni

Messaggioda Bokonon » 08/06/2019, 20:52

E' un piano in $R^4$
Anzu ha scritto:E per vedere se S è un sottospazio vettoriale di \(\displaystyle R^4 \) devo verificare le proprietà dei sottospazi, cioè contiene il vettore nullo, è chiuso rispetto alla somma ed chiuso rispetto al prodotto per scalari ?

Esatto. E abbiamo una base + una traslazione.
Se passa per l'origine allora va da se che contiene lo zero e S è l'insieme delle combinazioni della base data, quindi è uno spazio vettoriale per definizione.
Quindi cosa vorrai controllare?
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 1371 di 1551
Iscritto il: 25/05/2018, 21:22


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 16 ospiti