Dimostrazione che una matrice è invertibile <-> det != 0

Messaggioda daffeen » 10/06/2019, 21:37

Ciao a tutti, sto seguendo questa dimostrazione https://proofwiki.org/wiki/Matrix_is_Invertible_iff_Determinant_has_Multiplicative_Inverse e mi sono bloccato alla thus della sufficient condition.
Se io ho: A*B=C*D (con A,B,C,D matrici quadrate) come faccio ad avere tutto in funzione di D?
Cioè se fossimo in R (campo dei reali) potrei fare A*B*C^(-1) = D così come potrei fare C^(-1)*A*B = D.
Ma la moltiplicazione fra matrici non è commutativa, quindi c'è sostanzialmente una differenza nell'ordine in cui posiziono le matrici.
Non ho capito come fa il sito a spostare det(A) dall'altra parte, mi sapreste aiutare? Grazie mille <3
daffeen
Starting Member
Starting Member
 
Messaggio: 18 di 39
Iscritto il: 09/11/2018, 23:08
Località: Napoli

Re: Dimostrazione che una matrice è invertibile <-> det != 0

Messaggioda Bokonon » 10/06/2019, 21:46

det(A) è uno scalare
Avatar utente
Bokonon
Advanced Member
Advanced Member
 
Messaggio: 1390 di 2126
Iscritto il: 25/05/2018, 20:22

Re: Dimostrazione che una matrice è invertibile <-> det != 0

Messaggioda daffeen » 10/06/2019, 22:08

Grazie giusto....
Ma poi come fa dopo a portare "A" da sinistra della parentesi alla sua destra?
daffeen
Starting Member
Starting Member
 
Messaggio: 19 di 39
Iscritto il: 09/11/2018, 23:08
Località: Napoli

Re: Dimostrazione che una matrice è invertibile <-> det != 0

Messaggioda Bokonon » 10/06/2019, 23:22

Lo ha pure scritto...
$A*adj(A)=adj(A)*A$
Avatar utente
Bokonon
Advanced Member
Advanced Member
 
Messaggio: 1393 di 2126
Iscritto il: 25/05/2018, 20:22


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 15 ospiti