ancora teoria dei segnali

Messaggioda monkybonky » 26/07/2006, 17:02

ciao a tutti. mi siete stati molto utili con i vostri aiuti, ma ho ancora problemi con la teoria dei segnali.
in particolare, non riesco a risolvere questi due esercizi:

1)Ho un segnale stazionario in senso lato a media nulla e con densità spettrale pari a: Sx = tr (f/f0)
come si calcola la funzione di autocorrelazione?

2)Segnale Pam: $ x(t) = sum_(n) a(n) p(t-nT) $ (la sommatoria varia da meno infinito a più infinito, non so come esprimerla in mathml)

con a(n) che assume in ogni istante valori equiprobabili +1 e -1 indipendentemente dal valore di n e con

$p(t) = u(t) A e^-(3t/T) $

devo calcolare la densità spettrale di x(t) ed in più individuare e localizzare la presenza di eventuali righe spettrali.

:lol:
monkybonky
New Member
New Member
 
Messaggio: 13 di 83
Iscritto il: 11/02/2006, 11:43

Messaggioda Tipper » 26/07/2006, 18:59

L'autocorrelazione è l'antitrasformata della densità spettrale di potenza media, in questo caso: $R_{\x\x}(\tau)=f_0*"sinc"^2(f_0\tau)$
Avatar utente
Tipper
Cannot live without
Cannot live without
 
Messaggio: 490 di 5464
Iscritto il: 30/11/2004, 17:29

Messaggioda monkybonky » 26/07/2006, 19:56

grazie tipper, scusa se insisto, potresti abbozzarmi un grafico, vorrei capirne l'andamento. grazie
monkybonky
New Member
New Member
 
Messaggio: 14 di 83
Iscritto il: 11/02/2006, 11:43

Messaggioda Tipper » 26/07/2006, 20:33

Ecco il $"sinc"^2$:

Immagine

Te l'ho disegnato solo per $\tau \ge 0$, tanto è una funzione pari...
Avatar utente
Tipper
Cannot live without
Cannot live without
 
Messaggio: 491 di 5464
Iscritto il: 30/11/2004, 17:29

Messaggioda nicola de rosa » 26/07/2006, 22:32

Lo spettro (o PSD equivalentemente) di un segnale PAM è dato dalla formula:

spettro=Var[a(n)]*(|P(f)|^2)/T +(E[a(n)]/T)^2*sum(k=-oo^+oo)(|P(k/T)|^2)*delta(f-k/T)(dove P(f) è la trasformata di Fourier di p(t), Var[a(n)] èla varianza della variabile aleatoria a(n) ed E[a(n)] è la media.
In particolare in tal caso essendo i valori equiprobabili la media di a(n) è nulla per cui non ci sono righe spettrali e la varianza è uguale al valore quadratico medio e pari a:
Var[a(n)]=(1^2)*0.5+(-1)^2*0.5=1 per cui
Spettro=(|P(f)|^2)/T

La dimostrazione non è difficile basta conoscere le proprietà della funzione di autocorrelazione ed il teorema di wiener-kintchine e cioè che lo spettro di un segnale è la trasformata di Fourier della funzione di autocorrelazione
Se vuoi mi impegno a farla e postarla.
OK?
Ultima modifica di nicola de rosa il 26/07/2006, 22:55, modificato 3 volte in totale.
nicola de rosa
Advanced Member
Advanced Member
 
Messaggio: 121 di 2040
Iscritto il: 07/05/2006, 15:33

Messaggioda Fioravante Patrone » 26/07/2006, 22:36

Tipper ha scritto:L'autocorrelazione è l'antitrasformata della densità spettrale di potenza media.


scusate per l'OT
Ma volevo dire che sembra un pezzo di poesia, ed a leggerlo ha un ritmo straordinario (quanto al suo significato, per me è peggio dell'euskara).
ciao
Avatar utente
Fioravante Patrone
Cannot live without
Cannot live without
 
Messaggio: 104 di 9307
Iscritto il: 09/06/2006, 19:18
Località: Temporaneamente a Novi Ligure ;-)

Messaggioda monkybonky » 27/07/2006, 07:50

Tipper ha scritto:Ecco il $"sinc"^2$:

Te l'ho disegnato solo per $\tau \ge 0$, tanto è una funzione pari...


grazie per il supporto Tipper :D


nicasamarciano ha scritto:La dimostrazione non è difficile basta conoscere le proprietà della funzione di autocorrelazione ed il teorema di wiener-kintchine e cioè che lo spettro di un segnale è la trasformata di Fourier della funzione di autocorrelazione
Se vuoi mi impegno a farla e postarla.
OK?


grazie ma hai fato fin troppo nicasamarciano, ora provo prima a camminare sulle mie gambe :D
monkybonky
New Member
New Member
 
Messaggio: 15 di 83
Iscritto il: 11/02/2006, 11:43

Messaggioda Tipper » 27/07/2006, 09:00

Fioravante Patrone ha scritto:
Tipper ha scritto:L'autocorrelazione è l'antitrasformata della densità spettrale di potenza media.


scusate per l'OT
Ma volevo dire che sembra un pezzo di poesia, ed a leggerlo ha un ritmo straordinario (quanto al suo significato, per me è peggio dell'euskara).
ciao

Toglimi una curiosità, che è l'euskara?!?
Avatar utente
Tipper
Cannot live without
Cannot live without
 
Messaggio: 493 di 5464
Iscritto il: 30/11/2004, 17:29

Messaggioda Fioravante Patrone » 27/07/2006, 09:32

è la lingua basca

mi ha fatto davvero impressione quella frase. Non scherzavo!

ciao
Avatar utente
Fioravante Patrone
Cannot live without
Cannot live without
 
Messaggio: 110 di 9307
Iscritto il: 09/06/2006, 19:18
Località: Temporaneamente a Novi Ligure ;-)


Torna a Ingegneria

Chi c’è in linea

Visitano il forum: Nessuno e 12 ospiti