Messaggioda Camillo » 27/09/2006, 09:55

Vedo ora il post di Luca : ottimo e molto intuitivo purchè ti sia chiaro che cosa vuol dire modulare un segnale e come si ottiene lo spettro del segnale modulato.
Camillo
Avatar utente
Camillo
Moderatore globale
Moderatore globale
 
Messaggio: 1771 di 8096
Iscritto il: 31/08/2002, 21:06
Località: Milano -Italy

Messaggioda Kroldar » 27/09/2006, 10:10

Sì, un'idea della modulazione la tengo, poiché l'ultima lezione del corso che sto seguendo ora verteva proprio su di essa. Un'idea fisica della questione a dire il vero già ce l'avevo, l'esame di teoria dei segnali l'ho già dato l'anno scorso... adesso ne sto studiando uno che rappresenta per così dire il seguito. Ricordo bene la tabella delle trasformate notevoli: la trasformata della rect (quella che Camillo chiama impulso rettangolare) è una sinc ($sint/t$). Ciò che mi manca è la dimostrazione matematica rigorosa... Vabbè pazienza, grazie lo stesso a tutti. Qualora qualcuno la riuscisse a trovare in futuro, gradirei se me la mostrasse :wink:


Una domanda per Luca.barletta: come fai a dire che $sint$ è l'inviluppo di $sint * sin1000t$? Senza tracciare il grafico ovviamente :smt077
Voglio dire, in generale quando ha senso parlare di inviluppo di un segnale e come si trova tale inviluppo?
Kroldar
Advanced Member
Advanced Member
 
Messaggio: 716 di 2110
Iscritto il: 11/11/2005, 16:23

Messaggioda luca.barletta » 27/09/2006, 11:27

Kroldar ha scritto:Una domanda per Luca.barletta: come fai a dire che $sint$ è l'inviluppo di $sint * sin1000t$? Senza tracciare il grafico ovviamente :smt077
Voglio dire, in generale quando ha senso parlare di inviluppo di un segnale e come si trova tale inviluppo?


Quando un segnale $x(t)$ viene modulato in ampiezza tramite una portante sinusoidale $y(t)$, ovvero $z(t)=x(t)*y(t)$, ebbene $x(t)$ è sempre l'inviluppo di $z(t)$; infatti lo spettro $Z(f)$ non è altro che $X(f)$ a meno di una traslazione in frequenza.

In generale, parlando di segnali in campo complesso, l'inviluppo complesso $x(t)$ di un segnale $z(t)$, detto anche equivalente passa-basso, si ottiene dalla seguente:

$z(t)=Re[x(t)*e^(j2pift)]$

Il passaggio inverso lo lascio a te visto che hai studiato teoria dei segnali :wink:
Frivolous Theorem of Arithmetic:
Almost all natural numbers are very, very, very large.
Avatar utente
luca.barletta
Moderatore globale
Moderatore globale
 
Messaggio: 299 di 4261
Iscritto il: 21/10/2002, 20:09

Messaggioda Kroldar » 27/09/2006, 11:36

l'inviluppo complesso è detto anche equivalente passabasso?

come passaggio inverso intendi questo: $x(t)=z(t)e^(-j2pift)$?

in ogni caso a teoria dei segnali non abbiamo trattato inviluppo, modulazione e significato di alte e basse frequenze... ci siamo concentrati molto sui sistemi LTI e sulla probabilità
Kroldar
Advanced Member
Advanced Member
 
Messaggio: 717 di 2110
Iscritto il: 11/11/2005, 16:23

Messaggioda luca.barletta » 27/09/2006, 12:23

Esatto, ma ci vorrebbe anche un filtraggio passa basso; equivalente passa basso e inviluppo complesso sono sinonimi nella teoria dei segnali.
Frivolous Theorem of Arithmetic:
Almost all natural numbers are very, very, very large.
Avatar utente
luca.barletta
Moderatore globale
Moderatore globale
 
Messaggio: 300 di 4261
Iscritto il: 21/10/2002, 20:09

Messaggioda Kroldar » 27/09/2006, 18:22

Ok luca.barletta, grazie dei chiarimenti e grazie anche a camillo e lupo grigio. Abbiamo creato su matematicamente il dipartimento di telecomuncazioni 8-)
Kroldar
Advanced Member
Advanced Member
 
Messaggio: 718 di 2110
Iscritto il: 11/11/2005, 16:23

Messaggioda luca.barletta » 27/09/2006, 18:31

bhè, mi sembra un dipartimento ben nutrito :lol:
Frivolous Theorem of Arithmetic:
Almost all natural numbers are very, very, very large.
Avatar utente
luca.barletta
Moderatore globale
Moderatore globale
 
Messaggio: 301 di 4261
Iscritto il: 21/10/2002, 20:09

permettetemi un doppio ultimo intervento

Messaggioda mysterium » 03/10/2006, 01:02

Complimenti a tutti per lo straordinario spirito di semplicità dimostrato in questi topic. Gli ingegneri vadano sempre fieri di tale spirito: è una loro esclusiva, che li rendono uomini di cultura vasta e profonda, semplice e diretta, chiara ed inequivocabile.

Vi propongo una risposta ancora più veloce:
frequenza e tempo sono inversamente proporzionali, quindi segnale più veloce implica meno tempo, dunque più frequenza.

Ora provo a formalizzare matematicamente quanto detto da Kroldar.

Dai vostri discorsi emerge che intendete per ripidità del segnale il massimo valore assoluto della derivata.

Il valore assoluto dell'integrale non supera l'integrale del valore assoluto, quindi, ricordando che F(dx/dt)=j2*pi*f*X(f), calcolo la derivata come antitrasformata del suo spettro e ne calcolo il valore assoluto:

abs(dx/dt)=abs(int(j2*pi*f*X(f)*exp(j2*pi*ft)*df)<=int(abs(j2*pi*f*X(f)*exp(j2*pi*ft))*df)=2*pi*int(abs(f*X(f))*df)

quindi abs(dx/dt)<=2*pi*int(abs(f*X(f))*df) intendendo gli integrali calcolati su tutto l'asse dei tempi.

Introduco la funzione I(W)=2*pi*int(-W,W)(abs(f*X(f))*df).
Allora ottengo:

abs(dx/dt)<=I(W) (1)
se X(f)=0 per abs(f)>=W, ossia se la banda del segnale x(t) è W.

La funzione I(W) è crescente perché la funzione integranda è non negativa.

Dunque, la (1) ci dice che diminuendo la banda, la massima rapidità che il segnale PUO' assumere (non è detto che la assuma!) diminuisce.

Interpretazione elettronica, lo slew rate: per evitare distorsioni, la variazione del segnale in ingresso non deve essere più veloce della scarica dei condensatori. Non a caso la costante tempo di un circuito RC è il reciproco della pulsazione di taglio.
mysterium
Junior Member
Junior Member
 
Messaggio: 107 di 166
Iscritto il: 14/07/2006, 14:24

Messaggioda Kroldar » 04/10/2006, 20:07

Mysterium ti ringrazio per la spiegazione, la trovo molto chiara e precisa.
Kroldar
Advanced Member
Advanced Member
 
Messaggio: 748 di 2110
Iscritto il: 11/11/2005, 16:23

Messaggioda mysterium » 04/10/2006, 21:01

Grazie a te, kroldar, per l'apprezzamento; ti preciso che quanto detto vale, ovviamente, solo per segnali reali (come sai benissimo, in tal caso, lo spettro di ampiezza è pari, quello di fase è dispari, dunque posso limitarmi a considerare solo le frequenze positive).

Nota che la relazione

abs(dx/dt)<=2*pi*int(abs(f*X(f))*df)

ci dice, grazie al prodotto f*X(f), che le armoniche ad alta frequenza hanno un peso maggiore nel contributo all'integrale che determina la massima pendenza, in valore assoluto, del segnale.
Intuitivamente, avremmo dovuto aspettarci che la MASSIMA velocità del segnale fosse determinata prevalentemente dalle alte frequenze, cioè quelle a MASSIMA velocità.

Più precisamente, ricordiamo da Analisi I che l'integrale improprio suesposto converge se e solo se il modulo della funzione integranda è un infinitesimo, per f che va a infinito, di ordine superiore a 1/f, cioè se lim f^2*X(f)=0 per f che va ad inf, cioè se lo spettro è infinitesimo di ordine superiore a 1/f^2, ordine molto molto alto.
mysterium
Junior Member
Junior Member
 
Messaggio: 109 di 166
Iscritto il: 14/07/2006, 14:24

PrecedenteProssimo

Torna a Ingegneria

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti