Passa al tema normale
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Regole del forum

Consulta il nostro regolamento e la guida per scrivere le formule
Rispondi al messaggio

[Fluidodinamica] paratoia

12/11/2019, 17:20

Salve a tutti! vorrei chiedervi spiegazioni riguardo a questo esercizio svolto: vorrei capire perché la componente orizzontale della spinta viene calcolata in questo modo, cioè come fa ad ottenere la posizione del baricentro e dell'area,entrambi rispetto a x? vorrei capire anche come calcola la componente verticale, dato che l'immagine della proiezione non è molto chiara

Immagine

Re: [Fluidodinamica] paratoia

16/11/2019, 11:09

Se mi ricordo ancora qualcosa dell’argomento, credo che il problema possa essere impostato così:

La pressione sulla superficie del cilindro di larghezza unitaria può essere scritta come:

$p=\rho *g*(s+R*sin(\theta))$


La superficie elementare su cui la spinta si applica, per la componente orizzontale vale:

$ R*cos(\theta)d\theta$


E quella per la componente verticale:

$R*sin(\theta)d\theta$


Quindi la spinta (pressione per superficie) orizzontale diventa:

$So=\int_{0}^{\pi/2}(\rho*g*(s+R*sin(\theta))*R*cos(\theta))d\theta=\rho*g*s*R*\int_{0}^{\pi/2}(cos(\theta))d\theta+\rho*g*R^2*\int_{0}^{\pi/2}(sin(\theta)cos(\theta))d\theta=\rho*g*s*R+\rho*g*R^2/2$


E quella verticale:

$Sv=\int_{0}^{\pi/2}(\rho*g*(s+R*sin(\theta))*R*sin(\theta))d\theta=\rho*g*s*R*\int_{0}^{\pi/2}(sin(\theta))d\theta+\rho*g*R^2*\int_{0}^{\pi/2}sin(\theta)^2d\theta=\rho*g*s*R+\rho*g*R^2*\pi/4$

Oppure, con un semplice cambio di variabile:

$So=\int_{0}^{R}(\rho*g*(s+y))dy$

$Sv=\int_{0}^{R}(\rho*g*(s+\sqrt{(R^2-x^2)}))dx$

Le funzioni integrande dovrebbero rappresentare qui i contributi elementari alla spinta, rispettivamente orizzontale e verticale, che sono riportati graficamente.

Re: [Fluidodinamica] paratoia

18/11/2019, 20:14

Sinuous ha scritto:Se mi ricordo ancora qualcosa dell’argomento, credo che il problema possa essere impostato così:

La pressione sulla superficie del cilindro di larghezza unitaria può essere scritta come:

$p=\rho *g*(s+R*sin(\theta))$


La superficie elementare su cui la spinta si applica, per la componente orizzontale vale:

$ R*cos(\theta)d\theta$


E quella per la componente verticale:

$R*sin(\theta)d\theta$


Quindi la spinta (pressione per superficie) orizzontale diventa:

$So=\int_{0}^{\pi/2}(\rho*g*(s+R*sin(\theta))*R*cos(\theta))d\theta=\rho*g*s*R*\int_{0}^{\pi/2}(cos(\theta))d\theta+\rho*g*R^2*\int_{0}^{\pi/2}(sin(\theta)cos(\theta))d\theta=\rho*g*s*R+\rho*g*R^2/2$


E quella verticale:

$Sv=\int_{0}^{\pi/2}(\rho*g*(s+R*sin(\theta))*R*sin(\theta))d\theta=\rho*g*s*R*\int_{0}^{\pi/2}(sin(\theta))d\theta+\rho*g*R^2*\int_{0}^{\pi/2}sin(\theta)^2d\theta=\rho*g*s*R+\rho*g*R^2*\pi/4$

Oppure, con un semplice cambio di variabile:

$So=\int_{0}^{R}(\rho*g*(s+y))dy$

$Sv=\int_{0}^{R}(\rho*g*(s+\sqrt{(R^2-x^2)}))dx$

Le funzioni integrande dovrebbero rappresentare qui i contributi elementari alla spinta, rispettivamente orizzontale e verticale, che sono riportati graficamente.


Grazie mille davvero! ora mi è più chiaro :D un'ultima cosa: perché quello come intervallo di integrazione per entrambe le spinte?

Re: [Fluidodinamica] paratoia

19/11/2019, 08:52

Come conseguenza del cambio di variabile:

$y=R*sin(\theta)$
$dy=R*cos(\theta)d\theta$

$x=R*cos(\theta)$
$dx=-R*sin(\theta)d\theta$

Cambiano gli estremi di integrazione, da: $0, \pi/2$ a:$0,R$.

Considera poi, con riferimento al disegno, che i contributi elementari alla spinta si applicano proprio per una lunghezza pari a R sia in verticale che in orizzontale
Rispondi al messaggio


Skuola.net News è una testata giornalistica iscritta al Registro degli Operatori della Comunicazione.
Registrazione: n° 20792 del 23/12/2010.
©2000— Skuola Network s.r.l. Tutti i diritti riservati. — P.I. 10404470014.