Teoria dei segnali - Processi Causali

Messaggioda vik » 13/03/2009, 18:57

Se conosco la densità spettrale $S_x$ (f) (che è una sinc) di un PC WSS n(t) e lo pongo in ingresso ad un sistema LTI di cui conosco la risposta all'impulso h(t) (che è una rect) come faccio a calcolare E{y($t_1$ ), y($t_2$ )} cont $t_1$ e $t_2$ dati?
Grazie a tutti!
vik
Junior Member
Junior Member
 
Messaggio: 19 di 128
Iscritto il: 14/09/2007, 14:19

Messaggioda Ska » 14/03/2009, 13:11

Allora, vediamo un po' possiamo trovare la densità spettrale del processo in uscita $S_Y(f) = S_X(f)|H(f)|^2$, a questo punto sappiamo che $S_Y(f)$ è la trasformata di Fourier della funzione di autocorrelazione del processo $Y$, ovvero $R_Y(\tau)$, ove $\tau$ nel tuo caso sarà $t_2 - t_1$, infatti $R_Y(t_1, t_2) = E[Y(t_1)Y(t_2)]$ dato che il processo è WSS (e dato che non è specificato di che ordine, abbiamo che lo è sia per il primo che per il secondo ordine), allora $R_Y(t_1,t_2)$ dipende solamente da $\tau = t_2 - t_1$ e quindi $R_Y(\tau) = E[Y(t)Y(t+\tau)]$.

Quindi basta antitrasformare $S_Y(f)$ ottenendo così $R_Y(\tau)$ e calcolare la funzione di autocorrelazione in $\tau = t_2 - t_1$.
Ska
Junior Member
Junior Member
 
Messaggio: 57 di 441
Iscritto il: 22/12/2008, 22:33

Messaggioda vik » 14/03/2009, 15:46

Grazie,
altro problema, ma se il risultato di $S_y(f) = S_X(f)|H(f)|^2$ è il prodotto di due $sinc^2$ come faccio a fare l'antitrasformata?
vik
Junior Member
Junior Member
 
Messaggio: 23 di 128
Iscritto il: 14/09/2007, 14:19

Messaggioda Ska » 15/03/2009, 00:40

puoi studiare equivalentemente nei tempi la cosa come $R_Y(t) = R_X(t) \star \varphi_h(t)$ cioè la convoluzione tra l'autocorrelazione del processo in ingresso con la funzione di autocorrelazione della risposta all'impulso del sistema.
Ska
Junior Member
Junior Member
 
Messaggio: 59 di 441
Iscritto il: 22/12/2008, 22:33


Torna a Ingegneria

Chi c’è in linea

Visitano il forum: Nessuno e 13 ospiti