Problemino di trigonometria

Messaggioda Lucrezio » 26/08/2012, 13:31

Traccia la tangente t nel punto B alla semicirconferenza di diametro AB=4. Chiamati P un punto sulla semicirconferenza, Q la sua proiezione su AB e R quella su t, determina l'angolo PAB in modo che $2sqrt(3)PQ+PR=5AQ$.

Allora ho trovato facilmente PQ e AQ, ma come faccio a trovare PR? Il teorema dei seni è inutilizzabile...potreste darmi una mano per favore?
Lucrezio
Junior Member
Junior Member
 
Messaggio: 80 di 165
Iscritto il: 31/05/2011, 20:59
Località: Padova

Re: Problemino di trigonometria

Messaggioda chiaraotta » 26/08/2012, 16:18

Mi sembra che sia
$PR=QB=AB-AQ$.
Posto $x=PhatAB$, con $0<=x<=pi/2$, trovo
$AP=ABcos x$,
$PQ=APsinx=ABsinx cosx$,
$AQ=APcosx=ABcos^2x$
e
$PR=AB-AQ=AB-ABcos^2x=AB(1-cos^2x)=ABsin^2x$.
L'equazione
$2sqrt(3)PQ+PR=5AQ$
risulterebbe
$2sqrt(3)sinxcosx+sin^2x=5cos^2x$,
oppure
$sqrt(3)sin2x-3cos2x-2=0$,
o anche
$sqrt(3)sin(2x-pi/3)=1$.
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 1240 di 2466
Iscritto il: 14/05/2011, 17:13

Re: Problemino di trigonometria

Messaggioda Lucrezio » 26/08/2012, 16:33

Perché PR è uguale a QB?

Io ho risolto con PBA = x, quindi $PB=4cosx, PA=4sinx, PQ=4cosxsinx, AQ=4sinxcos(pi/2-2)=4sin^2x$.
Come faccio a trovare PR in funzione di x = PBA?:(
Lucrezio
Junior Member
Junior Member
 
Messaggio: 81 di 165
Iscritto il: 31/05/2011, 20:59
Località: Padova

Re: Problemino di trigonometria

Messaggioda chiaraotta » 26/08/2012, 18:19

Se ho capito bene il testo la situazione è questa:

Immagine

$PRBQ$ è un rettangolo.
chiaraotta
Advanced Member
Advanced Member
 
Messaggio: 1241 di 2466
Iscritto il: 14/05/2011, 17:13


Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 25 ospiti