Applicazioni lineari

Messaggioda pietro123 » 10/01/2017, 17:57

Esiste un'applicazione lineare suriettiva $T:R^3 -> R^3$ tale che $e_1+e_3\in KerT$?

Applicazione lineare suriettiva, cioè che $dim(Im(T))=dim(R^3)$ giusto?
Visto che la dimensione dell'immagione di T è uguale al rango $Rg(T)=dim(Im(T))=3$, in questo caso.
Quindi le $dim(KerT)=0$ se non ha dimensioni come fanno $e_1+e_3\in KerT$?
Detto questo come ricavo la matrice e soppratutto come verifico il resto?
:D :smt023
Avatar utente
pietro123
Junior Member
Junior Member
 
Messaggio: 65 di 102
Iscritto il: 03/01/2017, 15:35
Google Chrome 55.0.288 Google Chrome 55.0.288
Windows 10 64 bits Windows 10 64 bits

Re: Applicazioni lineari

Messaggioda cooper » 10/01/2017, 18:41

mi verrebbe da dirti che non esiste. sappiamo che un endomorfismo è iniettivo $hArr$ è suriettivo. il nucleo non è banale e quindi hai finito.
altrimenti con il teorema di nullità più rango posso dire (dato che almeno un elemento appartiene al kernel), che la dimensione dell'immagine non è 3.
cooper
Senior Member
Senior Member
 
Messaggio: 534 di 1360
Iscritto il: 25/07/2014, 10:19
Google Chrome 53.0.278 Google Chrome 53.0.278
Linux 64 bits Linux 64 bits

Re: Applicazioni lineari

Messaggioda pietro123 » 10/01/2017, 18:45

cooper ha scritto:mi verrebbe da dirti che non esiste. sappiamo che un endomorfismo è iniettivo $hArr$ è suriettivo. il nucleo non è banale e quindi hai finito.
altrimenti con il teorema di nullità più rango posso dire (dato che almeno un elemento appartiene al kernel), che la dimensione dell'immagine non è 3.


Quindi questo esercizio ha un'applicazione lineare sia suriettiva che iniettiva, quindi biiettiva.
detto questo posso dire per certo che non esiste un'applicazione lineare suriettiva in questo caso?
:D :smt023
Avatar utente
pietro123
Junior Member
Junior Member
 
Messaggio: 69 di 102
Iscritto il: 03/01/2017, 15:35
Google Chrome 55.0.288 Google Chrome 55.0.288
Windows 10 64 bits Windows 10 64 bits

Re: Applicazioni lineari

Messaggioda cooper » 10/01/2017, 18:53

quello che hai scritto è una contraddizione. dici che è bigettiva e dopo che non è suriettiva!
la tua applicazione non è nè suriettiva nè iniettiva.
cooper
Senior Member
Senior Member
 
Messaggio: 536 di 1360
Iscritto il: 25/07/2014, 10:19
Google Chrome 53.0.278 Google Chrome 53.0.278
Linux 64 bits Linux 64 bits

Re: Applicazioni lineari

Messaggioda pietro123 » 10/01/2017, 19:04

cooper ha scritto:quello che hai scritto è una contraddizione. dici che è bigettiva e dopo che non è suriettiva!
la tua applicazione non è nè suriettiva nè iniettiva.


Dicendo che $e_1+e_3\in KerT$ è impossibile perchè essendo che sto cercando un'applicazione surriettiva, cioè in cui $dim(Im(T))$ è massima e la $dim(KerT)=0$...
quindi $e_1+e_3$ non posssono appartenere al nucleo giusto?
:D :smt023
Avatar utente
pietro123
Junior Member
Junior Member
 
Messaggio: 71 di 102
Iscritto il: 03/01/2017, 15:35
Google Chrome 55.0.288 Google Chrome 55.0.288
Windows 10 64 bits Windows 10 64 bits

Re: Applicazioni lineari

Messaggioda cooper » 10/01/2017, 19:16

fai il ragionamento opposto. tu sai che quel vettore appartiene al nucleo, è un dato di fatto. sapendo questo può essere che un endomorfismo di $RR^3$ sia suriettivo? la risposta è no perchè la dimensione del nucleo è almeno 1.
cooper
Senior Member
Senior Member
 
Messaggio: 538 di 1360
Iscritto il: 25/07/2014, 10:19
Google Chrome 53.0.278 Google Chrome 53.0.278
Linux 64 bits Linux 64 bits

Re: Applicazioni lineari

Messaggioda pietro123 » 10/01/2017, 19:20

cooper ha scritto:fai il ragionamento opposto. tu sai che quel vettore appartiene al nucleo, è un dato di fatto. sapendo questo può essere che un endomorfismo di $RR^3$ sia suriettivo? la risposta è no perchè la dimensione del nucleo è almeno 1.


Perfetto :smt023
Grazie
:D :smt023
Avatar utente
pietro123
Junior Member
Junior Member
 
Messaggio: 72 di 102
Iscritto il: 03/01/2017, 15:35
Google Chrome 55.0.288 Google Chrome 55.0.288
Windows 10 64 bits Windows 10 64 bits

Re: Applicazioni lineari

Messaggioda cooper » 10/01/2017, 19:22

di nulla :-)
cooper
Senior Member
Senior Member
 
Messaggio: 539 di 1360
Iscritto il: 25/07/2014, 10:19
Google Chrome 53.0.278 Google Chrome 53.0.278
Linux 64 bits Linux 64 bits


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Yahoo [Bot] e 8 ospiti