elementi unitari e ideali propri

Messaggioda kalix » 13/07/2017, 09:56

ciao non riesco proprio a risolvere questo esercizio :cry:
Sia A l'anello
$A = \{$\begin{pmatrix} a & b \\ b & a \end{pmatrix}

$: a,b \in Z \/3 Z\}$

1. determinare gli elementi non unitari di A
2. mostrare che A ho solo due ideali propri (diversi dagli ideali banali A e $\{ 0\}$)

allora so che $Z \/3 Z$ = $([ 0 ]_3,[ 1 ]_3,[ 2 ]_3\)$
la definizione di elemento unitario di un anello è : sia $A$ un anello, un elemento $a \in A$ invertibile rispetto al prodotto si dice unitario.
per risolvere il primo punto devo calcolarmi la forse la matrice inversa ?
grazie per chi mi darà una mano
Avatar utente
kalix
Starting Member
Starting Member
 
Messaggio: 8 di 9
Iscritto il: 21/12/2016, 13:35
Safari 10.1.1 Safari 10.1.1
Mac OS X Mac OS X

Re: elementi unitari e ideali propri

Messaggioda achille_lauro » 16/07/2017, 16:10

Elementi non unitari: matrici non invertibili, ovvero con DETERMINANTE nullo (considerare il determinante). Ideali non banali: mostrare tutti i casi di prodotto righe per colonne tra due matrici con solo una delle due (quella generatore dell' ideale) avente entrate 'classe zero' ('classi zero' in ogni combinazioni sulle quattro entrate). Spero utile. Buona giornata.
achille_lauro
Starting Member
Starting Member
 
Messaggio: 5 di 18
Iscritto il: 26/07/2012, 06:09
Google Chrome 59.0.307 Google Chrome 59.0.307
Windows 8.1 64 bits Windows 8.1 64 bits

Re: elementi unitari e ideali propri

Messaggioda kalix » 17/07/2017, 08:58

grazie :)

quindi per il punto 1. gli elementi non unitari sono quando $det(A) = 0$ $\Leftrightarrow$ $det(A)=a^2-b^2$ $\Leftrightarrow$$a=b$
2. per mostrare che A ha due ideali propri devo fare:
$A*B=$ $B*A=$ $((b^2, ab),(ab,b^2))$ $=X$ tale che $B=$ $((\[0\]_3, b),(b,\[0\]_3))$
e
$A*C=$ $C*A=$ $((a^2, ab),(ab,a^2))$ $=Y$ tale che $B=$ $((a,\[0\]_3),(\[0\]_3, a))$
Concludo: $X$ e $Y$ sono i due ideali propri.

Quindi questo esercizio si risolve cosi? grazie per le eventuali risposte ;)
Avatar utente
kalix
Starting Member
Starting Member
 
Messaggio: 9 di 9
Iscritto il: 21/12/2016, 13:35
Safari 10.1.1 Safari 10.1.1
Mac OS X Mac OS X

Re: elementi unitari e ideali propri

Messaggioda achille_lauro » 19/07/2017, 12:06

$I$ ideale sinistro di $M(2,2;Z mod 3Z)$:

$I={$ \begin{bmatrix}
[a] & 0 \\
[b] & 0
\end{bmatrix} $}$


Comunque si prendano $A$ di $M(2,2; Z mod 3Z)$ e $B$ elemento di $I$

$A*B$ è un elemento di $I$.

Similmente, comunque si prendano $A$ di $M(2,2; Z mod 3Z)$ e $C$ elemento di $J$,

con
$J={$ \begin{bmatrix}
[a] & [b] \\
0 & 0
\end{bmatrix} $}$


risulta $C*A$ elemento di $J$, con $J$ ideale destro.

L' operazione 'prodotto riga per colonna' determina i soli $I$ e $J$ come ideali non bilateri dell' anello delle matrici quadrate di ordine 2
achille_lauro
Starting Member
Starting Member
 
Messaggio: 6 di 18
Iscritto il: 26/07/2012, 06:09
Google Chrome 59.0.307 Google Chrome 59.0.307
Mac OS X Mac OS X


Torna a Algebra, logica, teoria dei numeri e matematica discreta

Chi c’è in linea

Visitano il forum: Nessuno e 6 ospiti