Matrice invertibile parametri

Messaggioda simo996 » 15/11/2017, 00:55

salve, mi aiutate con quest'esercizio?

Sia A la matrice quadrata:

$((2,1,0),(0,1,-1),(0,2,4))$

sia I la matrice identica 3x3 e s un parametro reale,

1) si calcoli il determinante della matrice A-sI.

2) i calcolino i valori di s tali per cui A-Is non sia invertibile.

grazie in anticipo
simo996
Starting Member
Starting Member
 
Messaggio: 23 di 31
Iscritto il: 05/07/2017, 00:05

Re: Matrice invertibile parametri

Messaggioda mic999 » 15/11/2017, 10:30

Una volta che fai la differenza tra matrici, per calcolare il determinante di $det|a-sI|$ utilizza lo sviluppo di Laplace secondo la prima colonna e ottieni:
$det(A-sI)=(2-s) *$ \begin{vmatrix} 1-s & -1 \\ 2 & 4-s \end{vmatrix}
da cui trovi $det(A-sI)= (2-s) [(1-s)(4-s) +2] = ..= (2-s)(s-2)(s-3)$

La matrice non è invertibile quando $det(A-sI)=0$: imponendo questa uguaglianza e sfruttando il calcolo del punto precedente, trovi facilmente i valori di s per cui la matrice non è invertibile
mic999
Junior Member
Junior Member
 
Messaggio: 33 di 239
Iscritto il: 12/09/2017, 21:29

Re: Matrice invertibile parametri

Messaggioda simo996 » 15/11/2017, 12:40

mic999 ha scritto:Una volta che fai la differenza tra matrici, per calcolare il determinante di $det|a-sI|$ utilizza lo sviluppo di Laplace secondo la prima colonna e ottieni:
$det(A-sI)=(2-s) *$ \begin{vmatrix} 1-s & -1 \\ 2 & 4-s \end{vmatrix}
da cui trovi $det(A-sI)= (2-s) [(1-s)(4-s) +2] = ..= (2-s)(s-2)(s-3)$

La matrice non è invertibile quando $det(A-sI)=0$: imponendo questa uguaglianza e sfruttando il calcolo del punto precedente, trovi facilmente i valori di s per cui la matrice non è invertibile


I risultati del determinante non escono, mi spieghi come hai fatto?
simo996
Starting Member
Starting Member
 
Messaggio: 25 di 31
Iscritto il: 05/07/2017, 00:05

Re: Matrice invertibile parametri

Messaggioda simo996 » 15/11/2017, 12:47

a me esce che affinchè la matrice non sia invertivile, s=2. è giusto? :)
simo996
Starting Member
Starting Member
 
Messaggio: 26 di 31
Iscritto il: 05/07/2017, 00:05

Re: Matrice invertibile parametri

Messaggioda mic999 » 15/11/2017, 14:43

In che senso non escono i risultati del determinante?
Il determinante è : $det(A-sI)= (2-s)[(1-s)(4-s)+2]= (2-s) [4-s-4s+s^2 +2]= (2-s)(s^2 - 5s +6) =(2-s)(s-2)(s-3)$
se è questo che chiedi..
tu come hai fatto per trovare il determinante?
mic999
Junior Member
Junior Member
 
Messaggio: 34 di 239
Iscritto il: 12/09/2017, 21:29

Re: Matrice invertibile parametri

Messaggioda simo996 » 15/11/2017, 17:59

mic999 ha scritto:In che senso non escono i risultati del determinante?
Il determinante è : $det(A-sI)= (2-s)[(1-s)(4-s)+2]= (2-s) [4-s-4s+s^2 +2]= (2-s)(s^2 - 5s +6) =(2-s)(s-2)(s-3)$
se è questo che chiedi..
tu come hai fatto per trovare il determinante?

risolto...non è invertibile per s=2 giusto?
simo996
Starting Member
Starting Member
 
Messaggio: 27 di 31
Iscritto il: 05/07/2017, 00:05

Re: Matrice invertibile parametri

Messaggioda mic999 » 15/11/2017, 18:02

anche per $s=3$ non è invertibile
mic999
Junior Member
Junior Member
 
Messaggio: 37 di 239
Iscritto il: 12/09/2017, 21:29


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 7 ospiti