trovare le radici del polinomio caratteristico

Messaggioda zio_mangrovia » 14/11/2017, 22:48

La (applicazione definita su $CC^3$ dalla) matrice:
$((-i,i,-i),(i,1,0),(-i,0,1))$

So che è diagonalizzabile su $CC$.
Correggetemi se sbaglio:
non è diagonalizzabile su $RR$ perché la diagonale non è composta da valori reali
non autoaggiunto in quanto la matrice non ha né valori reali e non è simmetrica sec il criterio $a_(ij)=\bar(a_(ji))$

Se però sviluppo il polinomio caratteristico:
$-\lambda^3+(2-i)\lambda^2+(-3+2i)\lambda+2-i=0$

ho difficoltà a trovare le radici , so che sono 3 radici non tutte reali, per cui posso arrivare a dire che la matrice è diagonalizzabile su $CC$ senza sviluppare il polinomio caratteristico?
zio_mangrovia
Average Member
Average Member
 
Messaggio: 350 di 774
Iscritto il: 13/06/2016, 17:42

Re: trovare le radici del polinomio caratteristico

Messaggioda feddy » 14/11/2017, 23:36

Detta $A=((-i,i,-i),(i,1,0),(-i,0,1))$ vedi subito che tale matrice è normale. Quindi, per il thm. spettrale questa matrice è diagonalizzabile su $CC$
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 1562 di 2279
Iscritto il: 26/06/2016, 00:25

Re: trovare le radici del polinomio caratteristico

Messaggioda zio_mangrovia » 15/11/2017, 12:54

feddy ha scritto: vedi subito che tale matrice è normale. Quindi, per il thm. spettrale questa matrice è diagonalizzabile su $CC$


forse sto facendo confusione, ma credevo che il teorema spettrale fosse applicabile laddove presente un operatore lineare autoaggiunto, almeno così c'e' scritto nei miei appunti, ed in questo caso non lo è perché:
  • la diagonale della matrice non è composta da soli valori reali
  • gli elementi opposti alla diagonale non sono coniugati

Il teorema spettrale non mi dice se gli autovalori sono tutti reali? Mi dice solo che esiste una base ortonormale costituita da autovettori.
zio_mangrovia
Average Member
Average Member
 
Messaggio: 351 di 774
Iscritto il: 13/06/2016, 17:42

Re: trovare le radici del polinomio caratteristico

Messaggioda feddy » 15/11/2017, 20:46

Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 1563 di 2279
Iscritto il: 26/06/2016, 00:25


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Camillo e 6 ospiti