sistema dipendente

Messaggioda davide5 » 08/02/2018, 12:52

Ho problemi con la dimostrazione di questo teorema...

Un sistema $S$ è dipendente se e solo se esiste un vettore del sistema che dipende dai rimanenti.

ho provato a fare una dimostrazione che non mi convince del tutto provo a postarla e vedere se qualcuno mi corregge.

Supponiamo esistano $alpha_i$ non tutti nulli : $0=alpha_1v_1+alpha_2v_2+...+alpha_sv_s$

spostando un vettore a sinistra e ottengo:

$-alpha_1v_1=alpha_2v_2+alpha_3v_3+...+alpha_sv_s$

Divido tutto per $-alpha_1$ e otteniamo:

$v_1=-alpha_2/alpha_1 v_2- alpha_3/alpha_1v_3+...-alpha_s/alpha_1 v_s$

il che è uguale a : supponendo $(alpha_i/alpha_1=beta_i)$

$v_1=beta_2v_2+beta_3v_3+...+beta_sv_s$

Essendo $v!=0$ otteniamo:

$0=-v_1+beta_2v_2+...+beta_sv_s$

Otteniamo dunque un sistema dipendente


può andare???
davide5
Starting Member
Starting Member
 
Messaggio: 10 di 45
Iscritto il: 06/02/2018, 19:37

Re: sistema dipendente

Messaggioda davide5 » 10/02/2018, 13:03

nessuno proprio???
davide5
Starting Member
Starting Member
 
Messaggio: 17 di 45
Iscritto il: 06/02/2018, 19:37

Re: sistema dipendente

Messaggioda davide5 » 12/02/2018, 19:23

qualcuno che mi aiuta?????
davide5
Starting Member
Starting Member
 
Messaggio: 22 di 45
Iscritto il: 06/02/2018, 19:37

Re: sistema dipendente

Messaggioda Cantor99 » 13/02/2018, 00:52

Sia $S={v_1,...,v_t}$ linearmente dipendente: quindi la combinazione $a_1v_1+a_2v_2+...+a_tv_t=0$ (1) ammette coefficienti non nulli.
Se $v_1=0$ allora la tesi è vera quindi possiamo supporre $v_1!=0$. Inoltre con questa ipotesi almeno uno tra $a_2,...,a_t$ è non nullo altrimenti la (1) si riduce a $a_1v_1=0$ da cui $a_1=0$ e quindi il sistema $S$ non è più linearmente dipendente.
Ora sia $j=max(i|a_i!=0)$: è $j>=2$ (perché $a_1!=0$, se così non fosse se ne trarrebbe $v_1=0$, contro l'ipotesi) e la (1) diventa
$a_1v_1+...+a_jv_j=0$ da cui traiamo
$v_j=-\frac{a_1}{a_j}v_1-...-\frac{a_(j-1)}{a_j}v_(j-1)$

L'altro verso è banale
Ultima modifica di Cantor99 il 13/02/2018, 00:59, modificato 1 volta in totale.
Cantor99
Junior Member
Junior Member
 
Messaggio: 144 di 363
Iscritto il: 06/08/2017, 11:52
Località: Dragoni

Re: sistema dipendente

Messaggioda Cantor99 » 13/02/2018, 00:58

Scusami ho letto precedenti!
Comunque credo vada bene ma meglio prendere al posto di $v_1$ il generico vettore $v_i$
Cantor99
Junior Member
Junior Member
 
Messaggio: 145 di 363
Iscritto il: 06/08/2017, 11:52
Località: Dragoni

Re: sistema dipendente

Messaggioda davide5 » 13/02/2018, 12:07

Cantor99 ha scritto:Scusami ho letto precedenti!
Comunque credo vada bene ma meglio prendere al posto di $v_1$ il generico vettore $v_i$


va bene quello che ho scritto??? non ho capito :D :D
davide5
Starting Member
Starting Member
 
Messaggio: 23 di 45
Iscritto il: 06/02/2018, 19:37

Re: sistema dipendente

Messaggioda Cantor99 » 13/02/2018, 12:44

Va bene, dicevo che per maggior rigore che è meglio scrivere così
$a_iv_i=-a_1v_1-...-a_(i-1)v_(i-1)-a_(i+1)v_(i+1)-...-a_sv_s$

Ps intendevo di aver letto "precedenti" al posto di "restanti"
Cantor99
Junior Member
Junior Member
 
Messaggio: 147 di 363
Iscritto il: 06/08/2017, 11:52
Località: Dragoni

Re: sistema dipendente

Messaggioda davide5 » 13/02/2018, 12:59

ok grazie
davide5
Starting Member
Starting Member
 
Messaggio: 25 di 45
Iscritto il: 06/02/2018, 19:37


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Nessuno e 13 ospiti