Funzioni a 2 variabili

Messaggioda Stizzens » 13/03/2018, 21:52

salve a tutti,
stavo svolgendo degli esercizi dove devo disegnare la funzione e calcolarne il segno, quando mi sono trovato davanti a questo inghippo, la funzione che ho è questa:
$ -x^2/2-y^2/2-2x+y+10 $
ora io so che l' equazione è quella di una circonferenza, ma il fatto che entrambi i valori $ x^2 $ e $ y^2 $ siano fratto 2 è un problema oppure posso procedere tranquillamente con il calcolo del centro e del raggio?
anche perchè quando calcolo il raggio mi viene un numero negativo sotto radice.
grazie in anticipo
Stizzens
Junior Member
Junior Member
 
Messaggio: 111 di 133
Iscritto il: 15/11/2017, 17:39

Re: Funzioni a 2 variabili

Messaggioda gio73 » 13/03/2018, 22:16

ciao
non ho mica capito bene...
mettiamola così se intersechiamo la nostra funzione con piani paralleli al piano $xy$ otteniamo delle circonferenze, è questo ciò che intendi?
gio73
Moderatore
Moderatore
 
Messaggio: 5030 di 5154
Iscritto il: 27/11/2011, 15:41

Re: Funzioni a 2 variabili

Messaggioda Bremen000 » 13/03/2018, 22:18

Sia \[f(x,y):= -\frac{x^2}{2}-\frac{y^2}{2}-2x+y+10 \]

Andandone a studiare il segno imponi $f(x,y) >0$ ovvero:

\[ -\frac{x^2}{2}-\frac{y^2}{2}-2x+y+10>0 \Leftrightarrow x^2+y^2+4x-2y-20 <0 \]

E nella seconda disequazione puoi riconoscere una circonferenza.
"Nessuno riuscirà a cacciarci dal Paradiso che Cantor ha creato per noi." (Hilbert)
Bremen000
Average Member
Average Member
 
Messaggio: 634 di 753
Iscritto il: 08/09/2015, 12:16

Re: Funzioni a 2 variabili

Messaggioda dissonance » 14/03/2018, 02:03

gio73 ha scritto:ciao
non ho mica capito bene...
mettiamola così se intersechiamo la nostra funzione con piani paralleli al piano $xy$ otteniamo delle circonferenze, è questo ciò che intendi?

Giusta obiezione. Sottolineo che il grafico di una funzione di due variabili è un sottoinsieme di $\mathbb R^3$ e non del piano. La domanda è posta male.
dissonance
Cannot live without
Cannot live without
 
Messaggio: 13744 di 14087
Iscritto il: 24/05/2008, 20:39
Località: Nomade

Re: Funzioni a 2 variabili

Messaggioda Stizzens » 14/03/2018, 11:02

Bremen000 ha scritto:Sia \[f(x,y):= -\frac{x^2}{2}-\frac{y^2}{2}-2x+y+10 \]

Andandone a studiare il segno imponi $f(x,y) >0$ ovvero:

\[ -\frac{x^2}{2}-\frac{y^2}{2}-2x+y+10>0 \Leftrightarrow x^2+y^2+4x-2y-20 <0 \]

E nella seconda disequazione puoi riconoscere una circonferenza.

Quindi moltiplico tutti i membri per -2 in questo caso?
Stizzens
Junior Member
Junior Member
 
Messaggio: 112 di 133
Iscritto il: 15/11/2017, 17:39

Re: Funzioni a 2 variabili

Messaggioda Stizzens » 23/03/2018, 19:50

Grazie mille Bremen000 per la risposta
Stizzens
Junior Member
Junior Member
 
Messaggio: 114 di 133
Iscritto il: 15/11/2017, 17:39

Re: Funzioni a 2 variabili

Messaggioda gueridon » 23/03/2018, 20:30

Non so se tiserva più, però completando il quadrato hai $(x+2)^2+(y-1)^2=25$
così vedi subito che hai raggio 5, e traslata -come centro- su x e y rispettivamente a -2 e +1
Quindi il dominio sono i punti interni a questa circonferenza.

Di solito faccio così, ma non so se sia il metodo più breve. E' una cosa che mi è venuta naturale, credo i più esperti sappiano meglio guidarti :)
gueridon
New Member
New Member
 
Messaggio: 28 di 67
Iscritto il: 07/03/2018, 20:05

Re: Funzioni a 2 variabili

Messaggioda gio73 » 23/03/2018, 21:30

gueridon ha scritto:Non so se tiserva più, però completando il quadrato hai $(x+2)^2+(y-1)^2=25$
così vedi subito che hai raggio 5, e traslata -come centro- su x e y rispettivamente a -2 e +1
Quindi il dominio sono i punti interni a questa circonferenza.

Vuoi dire che non si può scegliere una coppia di $x;y$ esterna a questa circonferenza da inserire nella nostra funzione?

ad esempio $x=-10$ e $y=+10$?
gio73
Moderatore
Moderatore
 
Messaggio: 5053 di 5154
Iscritto il: 27/11/2011, 15:41

Re: Funzioni a 2 variabili

Messaggioda gueridon » 23/03/2018, 22:07

@gio
Hem svista, avevo letto questo scorrendo la pagina
Bremen000 ha scritto:$x^2+y^2+4x-2y-20 <0 $

e non so perché mi era rimasta in testa come fosse la domanda e ho immaginato un dominio con quella richiesta :-D
Spero sia almeno utile il resto :D
gueridon
New Member
New Member
 
Messaggio: 29 di 67
Iscritto il: 07/03/2018, 20:05


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Baidu [Spider], Cantor99, Google [Bot], Shimoda, vivi96, xXFEDERICOXx e 65 ospiti