Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda tompere » 20/01/2019, 01:33

Buonasera, sono incappato in questo esercizio:

Risolvere l'equazione differenziale:
$ y'=-y/t+2ln(t)y^2 $
$ y(1)=1 $

-Una volta trovata la soluzione discuterne la prolungabilità.
-Stabilire per quali $ y_0 | y(1)=y_0 $ è compreso tra $ (0,\infty) $

Ora io sono arrivato al punto in cui dopo la sostituzione di $ z = 1/y $ risolvo l'equazione differenziale lineare trovando

$ y = 1/(t(c-ln^2(t))) , c = 1 $

Da quanto ho capito dalla teoria, essendo $y(t)=0$ soluzione banale dell'equazione differenziale ed essendoci l'unicità della soluzione per $t=1$ la soluzione del problema di Cauchy non può cambiare di segno.

Detto ciò la mia assunzione è che $ t\in(e,1/e) $
Tuttavia ho molti dubbi su questo mio risultato.
E non ho idea di come risolvere il secondo punto.

Il mio professore non è stato molto chiaro su questa parte del corso e trovo sempre difficile trovare un criterio generale per identificare l'intervallo di prolungabilità. Anche qui sul forum ho trovato solo dei thread che citavano il teorema della scatola(che non è nel programma).

Grazie in anticipo
tompere
Starting Member
Starting Member
 
Messaggio: 9 di 14
Iscritto il: 28/11/2018, 15:52

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda gugo82 » 20/01/2019, 01:54

Una volta che sei in regime di unicità locale e che hai un’espressione esplicita della soluzione, l’insieme massimale cui puoi prolungare la tua soluzione è il più grande intervallo che contiene il punto iniziale $t_0=1$ in cui la tua soluzione è definita.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20537 di 22119
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda tompere » 20/01/2019, 02:13

Quindi se non erro in questo caso l'intervallo sarebbe definito dall'esistenza del logaritmo. Quindi $(0,\infty)$.

Per il secondo punto invece?
tompere
Starting Member
Starting Member
 
Messaggio: 10 di 14
Iscritto il: 28/11/2018, 15:52

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda gugo82 » 20/01/2019, 02:20

Non mi pare che la soluzione sia definita in $]0,+oo[$. Guarda bene.

Il secondo punto semplicemente non si capisce cosa voglia dire... Scrivi bene il testo.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20539 di 22119
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda tompere » 20/01/2019, 12:46

Ok scusa, allora l'insieme di definizione della soluzione è $(0,1/e) uu (1/e,e) uu (e,\infty)$

Quindi l'intervallo massimale è $(1/e,e)$

Il secondo punto penso dica di trovare, se esiste $y_0 $ limitata tale che $ y(1)=y_0$.
Quindi una funzione limitata per $t_0 = 1$
tompere
Starting Member
Starting Member
 
Messaggio: 11 di 14
Iscritto il: 28/11/2018, 15:52

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda gugo82 » 20/01/2019, 15:09

Non ho chiesto tu come faresti, ma di correggere il testo dell’esercizio, giacché è insensato.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20543 di 22119
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda tompere » 21/01/2019, 14:04

gugo82 ha scritto:Non ho chiesto tu come faresti, ma di correggere il testo dell’esercizio, giacché è insensato.


Ok sono riuscito ad avere l'esame. Il testo del secondo punto è:
Per quali valori di $y_0$ la soluzione del problema di Cauchy $y(1)=y_0$ è prolungabile all’intervallo $(0, ∞)$?
tompere
Starting Member
Starting Member
 
Messaggio: 12 di 14
Iscritto il: 28/11/2018, 15:52

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda gugo82 » 21/01/2019, 14:24

Beh, fatti due conti.
Al posto di imporre $y(1)=1$ dovrai imporre $y(1)=y_0$ e trovare l’espressione della soluzione; poi controllare se per qualche valore di $y_0$ il più grande intervallo del dominio che contiene $1$ coincide con $(0,+oo)$.

Fai attenzione, eventualmente, ai valori eccezionali di $y_0$, i.e. a quei possibili valori cui corrispondono soluzioni non ricavabili dall’integrale generale.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 20560 di 22119
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda tompere » 28/01/2019, 15:16

Ok grazie mille per l'aiuto. Avrei un altro dubbio.

Data $ y' = (2t)/(1+tan(t)^2)$

Mi viene chiesto di trovare la soluzione del problema di cauchy per $ y(1)=0 $
Trovo $ y= arctan(t^2-1) $
Il mio problema sta sempre nel trovare l'intervallo di prolungabilità:

- É tutto R in quanto la soluzione e definita per ogni t?
- Devo fare attenzione all'esistenza ed unicità della soluzione per quei punti in cui $y(t) = pi/2 + kpi$? In quanto per $y_0 = π/2 +kπ $ non è garantita ne l'esistenza ne l'unicità?
tompere
Starting Member
Starting Member
 
Messaggio: 13 di 14
Iscritto il: 28/11/2018, 15:52

Re: Intervallo prolungabilità soluzione equazione differenziale.

Messaggioda tompere » 29/01/2019, 03:05

Nessuno?
tompere
Starting Member
Starting Member
 
Messaggio: 14 di 14
Iscritto il: 28/11/2018, 15:52

Prossimo

Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: Nessuno e 39 ospiti