Re: Dubbio su integrale

Messaggioda axpgn » 11/02/2019, 19:42

SirDanielFortesque ha scritto:Però il 40% è tecnica secondo me. Il resto non so cos'è. Forse come dici tu è arte.

Vedi, persisti :-D
Dire "40%" non ha nessun senso ...

Se appena appena vai oltre confine (gli esercizi da libro … e Zfres ne ha visti senz'altro meno di te), il territorio si fa sempre più sconosciuto ... :-D

Se io "buttassi lì" a Zfres questo $int e^(x^2) dx$ integrale da risolvere, apparentemente semplice, corro il rischio di farlo diventare matto perché si butterebbe a capofitto nel trovargli una primitiva "normale", invece di fermarsi e chiedersi: "È fattibile?", "A senso cercare una primitiva?", "Tutte le funzioni hanno una primitiva?", e cose simili.
Ad un certo punto (forse anche prima) la Matematica è soprattutto questo e forse è meglio capirlo per tempo ... IMHO :wink:

Cordialmente, Alex
axpgn
Cannot live without
Cannot live without
 
Messaggio: 12956 di 13998
Iscritto il: 20/11/2013, 23:03

Re: Dubbio su integrale

Messaggioda ZfreS » 11/02/2019, 19:48

Ma come si fà a capire a priori se esiste una primitiva semplice? Nel caso della campana di Gauss(si la conosco) si può dimostrare che non è risolvibile esattamente ma solo approsimativamente?
ZfreS
Senior Member
Senior Member
 
Messaggio: 1484 di 1791
Iscritto il: 22/10/2016, 18:52

Re: Dubbio su integrale

Messaggioda Obidream » 11/02/2019, 19:53

SirDanielFortesque ha scritto:
axpgn ha scritto:pensi di averli visti tutti


I sorci verdi dopo tanti esercizi si. Tutti gli integrali no. :D

Però il 40% è tecnica secondo me. Il resto non so cos'è. Forse come dici tu è arte.

Sempre per esempio se scrivo

$I=intsqrt(x)/(1+root(3)(x))dx$

è la tecnica che mi dice che devo sostituire $x=t^n$ con $n=mcm(2,3)=6$. Se inizio a fare sostituzioni alla carlona mi complico la vita soltanto.

Ci vuole quella che qualcuno chiamava "vedenza" :lol:

Comunque in generale basta che la funzione sia continua su $I$ per ammettere una primitiva su $I$, ma questa potrebbe non essere esprimibile in termini finiti mediante funzioni elementari, che è appunto il caso di $e^(-x^2)$
((v & 0xff) && (v & 0xff00) && (v & 0xff0000) && (v & 0xff000000))
Avatar utente
Obidream
Senior Member
Senior Member
 
Messaggio: 1019 di 1067
Iscritto il: 07/02/2012, 21:57

Re: Dubbio su integrale

Messaggioda axpgn » 11/02/2019, 19:58

ZfreS ha scritto:Ma come si fà a capire a priori se esiste una primitiva semplice?

E dagli … tu cerchi sempre risposte semplici o quantomeno "schematiche" e "classificabili" ma non è detto che esistano, anzi potrebbero non esistere affatto delle risposte.
Non sei certo l'unico, anzi è abbastanza comune lo studente che cerca una soluzione tipo la formula risolutiva dell'equazione di secondo grado, però se ti interessa la Matematica e se vuoi continuare a studiarla, devia andare oltre questo atteggiamento
axpgn
Cannot live without
Cannot live without
 
Messaggio: 12958 di 13998
Iscritto il: 20/11/2013, 23:03

Re: Dubbio su integrale

Messaggioda axpgn » 11/02/2019, 19:59

Obidream ha scritto:Ci vuole quella che qualcuno chiamava "vedenza" :lol:

Questa non l'avevo mai sentita :D
axpgn
Cannot live without
Cannot live without
 
Messaggio: 12959 di 13998
Iscritto il: 20/11/2013, 23:03

Re: Dubbio su integrale

Messaggioda SirDanielFortesque » 11/02/2019, 20:30

axpgn ha scritto: il territorio si fa sempre più sconosciuto


Certo. L'importante è cominciare dal principio e poi continuare.
Conoscete la storia del Conte Giacomo Ceconi?
Avatar utente
SirDanielFortesque
Senior Member
Senior Member
 
Messaggio: 653 di 1091
Iscritto il: 27/12/2016, 09:35
Località: Milano.

Re: Dubbio su integrale

Messaggioda Bokonon » 11/02/2019, 20:47

Eccone uno "facile" $int sin(sin(x)) dx$
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 814 di 1481
Iscritto il: 25/05/2018, 21:22

Re: Dubbio su integrale

Messaggioda axpgn » 11/02/2019, 21:18

La risposta di Wolfram :-D

Testo nascosto, fai click qui per vederlo
Immagine
axpgn
Cannot live without
Cannot live without
 
Messaggio: 12960 di 13998
Iscritto il: 20/11/2013, 23:03

Re: Dubbio su integrale

Messaggioda Bokonon » 11/02/2019, 21:37

La soluzione :-D
Immagine
Avatar utente
Bokonon
Senior Member
Senior Member
 
Messaggio: 816 di 1481
Iscritto il: 25/05/2018, 21:22

Re: Dubbio su integrale

Messaggioda SirDanielFortesque » 11/02/2019, 22:58

Questo non è classificato sul libro :D
Conoscete la storia del Conte Giacomo Ceconi?
Avatar utente
SirDanielFortesque
Senior Member
Senior Member
 
Messaggio: 654 di 1091
Iscritto il: 27/12/2016, 09:35
Località: Milano.

PrecedenteProssimo

Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 13 ospiti