Moto di un cilindro oscillante

Messaggioda Simjap98 » 11/02/2019, 21:21

Buonasera a tutti, ho un quesito che mi è stato proposto a cui non sono riuscito a trovare una soluzione.
Se si prende un cilindro e lo si scosta dalla sua posizione verticale di equilibrio, quale sarà il moto dell'oggetto (considerando la possibilità di moto vincolata al piano xy)?
Avreste qualche punto di partenza da consigliarmi?
Vi lascio qua un'immagine per capire la situazione descritta.

Immagine
Simjap98
Starting Member
Starting Member
 
Messaggio: 34 di 37
Iscritto il: 15/02/2017, 13:11

Re: Moto di un cilindro oscillante

Messaggioda mgrau » 11/02/2019, 21:57

Visto che lo chiami cilindro "oscillante", ti riferisci alle piccole oscillazioni intorno alla posizione verticale?
Oppure, come appare dal disegno, ti interessa il moto di caduta?
mgrau
Cannot live without
Cannot live without
 
Messaggio: 4536 di 4568
Iscritto il: 29/11/2016, 11:10
Località: Milano

Re: Moto di un cilindro oscillante

Messaggioda Simjap98 » 11/02/2019, 22:06

Sì, mi riferisco alle piccole oscillazioni intorno alla posizione verticale.
Simjap98
Starting Member
Starting Member
 
Messaggio: 35 di 37
Iscritto il: 15/02/2017, 13:11

Re: Moto di un cilindro oscillante

Messaggioda mgrau » 11/02/2019, 22:18

Simjap98 ha scritto:Sì, mi riferisco alle piccole oscillazioni intorno alla posizione verticale.

Se noti il movimento del centro di massa, vedi che percorre due archi di cerchio: quando oscilla a destra, ruota intorno al bordo di destra, al contrario quando oscilla a sinistra- I due archi di cerchio formano una cuspide (meglio, un punto angoloso) nel centro; le piccole oscillazioni non sono armoniche, dato che la forza di richiamo non è proporzionale allo spostamento, direi che in prima approssimazione è costante per piccoli spostamenti, per cui, su ogni lato dovrebbe avere una accelerazione costante verso il punto centrale, dove l'accelerazione si inverte. Ci sono delle discontinuità.
mgrau
Cannot live without
Cannot live without
 
Messaggio: 4537 di 4568
Iscritto il: 29/11/2016, 11:10
Località: Milano

Re: Moto di un cilindro oscillante

Messaggioda Simjap98 » 11/02/2019, 22:35

Grazie mille per il consiglio! Un'ultima domanda, come faccio a trovare le coordinate del baricentro in funzione dell'angolo?
Simjap98
Starting Member
Starting Member
 
Messaggio: 36 di 37
Iscritto il: 15/02/2017, 13:11

Re: Moto di un cilindro oscillante

Messaggioda mgrau » 11/02/2019, 23:03

Un po' di trigonometria. Le coordinate del CM sono inizialmente $Rcosalpha; Rsinalpha$; dopo una rotazione di $beta$ diventano $Rcos(alpha+beta); Rsin(alpha+beta)$. E probabilmente, visto che $beta$ è piccolo e $h$ è molto maggiore di $r$ si potranno fare delle approssimazioni.
Immagine
mgrau
Cannot live without
Cannot live without
 
Messaggio: 4538 di 4568
Iscritto il: 29/11/2016, 11:10
Località: Milano

Re: Moto di un cilindro oscillante

Messaggioda Simjap98 » 11/02/2019, 23:08

Grazie mille nuovamente! Una buona serata :smt023
Simjap98
Starting Member
Starting Member
 
Messaggio: 37 di 37
Iscritto il: 15/02/2017, 13:11


Torna a Fisica, Fisica Matematica, Fisica applicata, Astronomia

Chi c’è in linea

Visitano il forum: Nessuno e 24 ospiti