Funzionale lineare e operatore lineare

Messaggioda LUCIANO74 » 10/06/2019, 11:01

Non ho chiaro il motivo per cui il differenziale di una funzione è chiamato anche "operatore lineare".

Considero lo spazio vettoriale $R^2$ delle coppie di numeri reali definito sul campo $R$.
In $R^2$ il differenziale di una funzione in un punto $(x_0,y_0)$ è l'operatore : $df_x$: $R^2 -> R$ i cui valori sono dati da:
$df_x(h)$= $(delf)/(delx_0)*h_1$ $+$ $(delf)/(dely_0)*h_2$.
Quindi se ho capito bene, l'applicazione prende in input una coppia di numeri $(h_1,h_2)$ che appartiene allo spazio $R^2$ di partenza e li moltiplica per le derivate parziali calcolate in $(x_0,y_0)$ ottenendo uno scalare.

Se l'operatore lineare è definito come una applicazione lineare dallo spazio vettoriale in se quindi nel caso dell'esempio da $R^2->R^2$ il differenziale di una funzione dovrebbe essere un "funzionale lineare" che agisce da uno spazio $R^2$ sul suo campo $R$ e non un operatore.

Grazie a tutti
LUCIANO74
Starting Member
Starting Member
 
Messaggio: 43 di 46
Iscritto il: 10/04/2012, 07:51

Re: Funzionale lineare e operatore lineare

Messaggioda anto_zoolander » 10/06/2019, 21:17

Il differenziale in un punto non è per forza un funzionale è semplicemente una applicazione lineare continua tra i due spazi vettoriali; è chiaro che se il codominio di $f$ è $RR$ allora l’applicazione lineare avrà come codominio $RR$ e sarà un funzionale continuo.
Error 404
Avatar utente
anto_zoolander
Moderatore
Moderatore
 
Messaggio: 3984 di 4283
Iscritto il: 06/10/2014, 16:07
Località: Palermo

Re: Funzionale lineare e operatore lineare

Messaggioda LUCIANO74 » 11/06/2019, 09:27

ok, grazie 1000
LUCIANO74
Starting Member
Starting Member
 
Messaggio: 44 di 46
Iscritto il: 10/04/2012, 07:51


Torna a Geometria e algebra lineare

Chi c’è in linea

Visitano il forum: Sergio e 18 ospiti

cron