limite

Messaggioda cri98 » 11/06/2019, 15:25

$ lim_x -> 0(cos^3sqrt(x)-root(3)(cos(x))) /x^(2/3) $
l'unico modo per risolvere questo limite sono utilizzare gli sviluppi di taylor?

$ cos(x)=x-x^2/2+x^4/24 $
come sviluppo $cos^3sqrt(x)=1-3/2x+7/8x^2-61/240x^3+....$
non so come calcolare lo sviluppo di taylor
devo fare prima il quadrato di trinomio e poi sostituire la radice di x al posto della x?
mi aiutate nei calcoli non riesco a venirne a capo.

Grazie!
cri98
Junior Member
Junior Member
 
Messaggio: 267 di 268
Iscritto il: 30/04/2018, 17:18

Re: limite

Messaggioda pilloeffe » 12/06/2019, 13:05

Ciao cri98,
cri98 ha scritto:l'unico modo per risolvere questo limite sono utilizzare gli sviluppi di taylor?

No, si può fare anche così:

$ \lim_{x \to 0} (cos^3sqrt(x)-root(3)(cosx))/x^(2/3) = \lim_{x \to 0} (- 1 + cos^3sqrt(x)-(root(3)(cosx) - 1))/x^(2/3) = $
$ = \lim_{x \to 0} - \frac{1-cos^3sqrt(x)}{(sqrt(x))^2}x^(1/3) -(root(6)(1 - sin^2x) - 1)/x^(2/3) = $
$ = \lim_{x \to 0} - \frac{1-cossqrt(x)}{(sqrt(x))^2} (1 + cossqrt(x) + cos^2sqrt(x))x^{1/3}+(root(6)(1 - sin^2x) - 1)/(-sin^2 x) \cdot (sin^2x/x^2) \cdot x^(4/3) = $
$ = -1/2 \cdot 3 \cdot 0 + 1/6 \cdot 1 \cdot 0 = 0 $
Ultima modifica di pilloeffe il 12/06/2019, 14:57, modificato 1 volta in totale.
pilloeffe
Advanced Member
Advanced Member
 
Messaggio: 2881 di 2904
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena

Re: limite

Messaggioda mobley » 12/06/2019, 14:40

De l'Hopital?
mobley
Junior Member
Junior Member
 
Messaggio: 354 di 389
Iscritto il: 16/06/2017, 18:23

Re: limite

Messaggioda pilloeffe » 12/06/2019, 14:53

Ciao mobley,

Può darsi, onestamente non ci ho guardato: prova... :wink:
pilloeffe
Advanced Member
Advanced Member
 
Messaggio: 2882 di 2904
Iscritto il: 07/02/2017, 16:45
Località: La Maddalena - Modena


Torna a Analisi matematica di base

Chi c’è in linea

Visitano il forum: arnett, Mephlip e 9 ospiti