Approsimazione normale

Messaggioda Blackienbad » 14/06/2019, 11:08

Esercizio A.1.38. Si sa che una v-a X ha varianza σ^2 = 3; si eseguono n = 243 misure di X e se ne calcola la media Xn. Facendo uso dell’approssimazione normale, calcolare la probabilità $P{|Xn − µ| > 1/6}$ che il valore assoluto della differenza fra Xn e il suo valore d’attesa µ superi 1/6
Risposta: $P{|Xn − µ| > 1/6}≃ 0.134$

Io utilizzando la formula $(bar(X)-mu)/sigma sqrt(n)=(bar(X)-mu)/sqrt(3) sqrt(243)=9.16(bar(X)-mu)$ ho ottenuto $P{|Z| > 1.52}$, facendo invecela formula completa $(1.8967-1.73)/sqrt(3) sqrt(243)$ ho ottenuto il risultato $1.52*phi(1.52)=1.422$ che è completamente sbagliato, potreste aiutarmi?
Blackienbad
Starting Member
Starting Member
 
Messaggio: 1 di 3
Iscritto il: 14/06/2019, 10:55

Re: Approsimazione normale

Messaggioda tommik » 14/06/2019, 11:22

se fai bene i conti ottieni

$mathbb{P}{|bar(X)_243-mu|>1/6}=mathbb{P}{|Z|>sqrt(243)/(6*sqrt(3))}=mathbb{P}{|Z|>1.5}=1-[Phi(1.5)-Phi(-1.5)]=1-(0.933-0.067)=0.134$

@Black&Bad: benvenuto nella community, sono contento che ogni tanto qualche noiscritto posti messaggi ben scritti.

:smt039
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5581 di 5897
Iscritto il: 23/04/2015, 13:13
Località: in provincia di Varese

Re: Approsimazione normale

Messaggioda Blackienbad » 14/06/2019, 11:26

tommik ha scritto:se fai bene i conti ottieni

$mathbb{P}{|bar(X_(n))-mu|>1/6}=mathbb{P}{|Z|>sqrt(243)/(6*sqrt(3))}=mathbb{P}{|Z|>1.5}=1-[Phi(1.5)-Phi(-1.5)}]=1-(0.933-0.067)=0.134$


Scusami ma non riesco a capire perchè 1-[Phi(1.5)-Phi(-1.5)], sempre su questo forum in un altro esercizio ho trovato una soluzione che prevedeva il per questo è il link https://www.matematicamente.it/forum/viewtopic.php?p=8383862 desti tu la risposta, potresti aiutarmi nel capire quando usare il per, quando no e perchè usare due phi?
Blackienbad
Starting Member
Starting Member
 
Messaggio: 2 di 3
Iscritto il: 14/06/2019, 10:55

Re: Approsimazione normale

Messaggioda tommik » 14/06/2019, 11:32

ci sono vari modi di procedere del tutto equivalenti...non è che ogni volta mi ricordo come ho fatto anni prima.. di volta in volta ragiono, e così dovresti fare tu.

ti chiede, dopo aver standardizzato, fatto i conti ecc ecc, con $k$ positivo, di determinare $P(|Z|>k)$

puoi fare così1

$P(|Z|>k)=1-P(|Z|<k)=1-P(-k<Z<k)=1-[Phi(k)-Phi(-k)]=" nel tuo esempio "=$

$=1-(0.933-0.067)=0.134$

ma anche così: sai che la distribuzione Z e simmetrica rispetto a zero e quindi

$P(|Z|>k)=P(Z<-k)+P(Z>k)=2P(Z<-k)=2Phi(-k)=" nel tuo esempio "=2*0.067=0.134$

Note

  1. per semplicità di notazione non uso le disuguaglianze forti / deboli come dovrei, tanto la distribuzione è continua e quindi a misura nulla in ogni punto...
Gurdulù ha ingurgitato una pinta d'acqua salata prima di capire che non è il mare che deve stare dentro a lui ma è lui che deve stare nel mare
Avatar utente
tommik
Moderatore
Moderatore
 
Messaggio: 5582 di 5897
Iscritto il: 23/04/2015, 13:13
Località: in provincia di Varese

Re: Approsimazione normale

Messaggioda Blackienbad » 14/06/2019, 11:43

Grazie mille per le risposte
Blackienbad
Starting Member
Starting Member
 
Messaggio: 3 di 3
Iscritto il: 14/06/2019, 10:55


Torna a Statistica e probabilità

Chi c’è in linea

Visitano il forum: Nessuno e 22 ospiti