[Elettronica] Semplificazione tramite algebra di boole

Messaggioda corsan73 » 11/07/2019, 22:38

Ciao a tutti
devo semplificare questa espressione
dati 4 segnali xo, x1,x2,x3 l'apice indica la negazione
z=x1x2x3+x2x3'+xo+x1'
come risultato mi da
z=x2+xo+x1'

Ho provato con ogni proprietà dell'algebra di boole ma non giungo al risultato
riesco ad arrivare a questa espressione usando le proprieta di assorbimento
z=x2(x1+x3')+xo+x1'
e da qui non riesco a procedere.
non vorrei ci fosse qualche errore di stampa.
Mi date una mano gentilmente grazie.
corsan73
Starting Member
Starting Member
 
Messaggio: 2 di 2
Iscritto il: 27/06/2018, 18:44

Re: [Elettronica] Semplificazione tramite algebra di boole

Messaggioda caulacau » 12/07/2019, 00:42

Sì, Wolfram conferma:

Codice:
In[1]: (x1 && x2 && x3) || (x2 &&  !x3) || xo ||  !x1
In[2]: %//BooleanMinimize

! x1 || x2 || xo

Si tratterà di trovare la giusta riduzione, per esempio \((X_1 \land X_2 \land X_3) \vee (X_2\land \lnot X_3) = X_2 \land (X_1 \lor \lnot X_3) \).
Avatar utente
caulacau
Junior Member
Junior Member
 
Messaggio: 130 di 233
Iscritto il: 08/05/2019, 18:30

Re: [Elettronica] Semplificazione tramite algebra di boole

Messaggioda Vidocq » 12/07/2019, 06:53

Basta calcolare il complemento della funzione $\text{z}$.
Calcolare i vari prodotti/somme e applicare alcune proprietà note dell'algebra di Boole, minimizzando la funzione complemento $\text{z}'$.
Ricalcoli il complemento per tornare alla $\text{z}$.
Nell'oscurità l'immaginazione lavora più attivamente che in piena luce. (Immanuel Kant)
Avatar utente
Vidocq
Junior Member
Junior Member
 
Messaggio: 209 di 247
Iscritto il: 25/03/2019, 20:39
Località: Trantor

Re: [Elettronica] Semplificazione tramite algebra di boole

Messaggioda RenzoDF » 12/07/2019, 07:35

E perché non usare una semplice mappa di Karnaugh1, che di certo conoscerai. :wink:

Immagine

Che volendo ti "suggerirà" anche le operazioni booleane necessarie alla semplificazione.
"Il circuito ha sempre ragione" (Luigi Malesani)
RenzoDF
Cannot live without
Cannot live without
 
Messaggio: 5276 di 5746
Iscritto il: 06/08/2014, 09:08


Torna a Ingegneria

Chi c’è in linea

Visitano il forum: professorkappa e 9 ospiti