Risoluzione problemi con equazioni

Messaggioda Marco1005 » 23/07/2019, 18:20

Ciao a tutti, avrei bisogno di aiuto per risolvere questi problemi in quanto non ci sono riuscito.
Esercizio 1)

$ (x^2- x-2)/(2x^2+ 3x+5)*((x+1)/(x-1)+(x-1)/(x+1) )+(2-1/(x-1))^2-(x+3)/(1-x)=0 $

$ ((x+1)(x-2))/(2x^2+ 3x+5) *((x+1)/(x-1)+(x-1)/(x+1) ) + 4 + 1/(1-x)^2 - 4/(1-x) -(x+3)/( 1-x) $

$ ((x+1)(x-2)(x+4))/(2x^2+3x+5 (x-1))+((x-2)(x-1))/(2x^2+3x+5)+4 + 1/(1-x)^2 - 4/(1-x) -(x+3)/( 1-x) $

Ma non credo sia la strada giusta per proseguire – soluzioni 0 e 5/6


Esercizio 2)
Un gruppo di amici decide di andare al mare – noleggiano ombrelloni e brandine per 1400 euro.
5 di loro si sono appena diplomati e gli altri componenti del gruppo decidono di regalare loro il costo degli ombrelloni.
La spesa per i paganti aumenta di € 5 – quanti sono i componenti del gruppo – risposta 40 ma non riesco a impostare l’equazione.

Esercizio 3)
Un trapezio rettangolo ha l’area di 690 cm2 – il lato piccolo è 9/14 di quello grande, e la somma del lato piccolo e grande supera di 49 cm l’altezza.
Determinare il perimetro - risposta 114 cm
Scusate per l’ignoranza delle domande (soprattutto le ultime 2) ma nonostante l’apparente semplicità in questo momento non riesco proprio a connettere.
Marco1005
New Member
New Member
 
Messaggio: 50 di 88
Iscritto il: 03/04/2019, 22:12

Re: Risoluzione problemi con equazioni

Messaggioda Zero87 » 23/07/2019, 18:55

Nella prima equazione, dove hai il quadrato, il doppio prodotto tra i due termini è $-4/(x-1) = 4/(1-x)$ se poi vuoi portarlo a $1-x$.
Per il resto ho qualche dubbio sul primo denominatore, cioè su $2x^2+3x+5$ che non è scomponibile (in un'espressione con tanti prodotti mi sembra strano, ma magari si semplifica alla fine).

Nel secondo esercizio ho idea che la difficoltà sia solo nel trovare l'equazione o il sistema di equazioni giuste. Ho un'idea ma mi viene un sistema di quarto grado - non difficile, ma comunque un sistema di quarto grado con due equazioni di secondo grado. In soldoni mi viene in mente di indicare con $x$ gli amici e con $y$ il costo pro-capite per ognuno di loro...

Per il terzo, anche se sono scarso in geometria, posso comunque dirti che il testo ti dà una mano nel dirti come assegnare le incognite
Marco1005 ha scritto:il lato piccolo è 9/14 di quello grande

questo è un suggerimento e l'altro è
e la somma del lato piccolo e grande supera di 49 cm l’altezza.

per poi ricordare che hai a disposizione il dato dell'area da usare.
#ilfuturononcrolla
Ex studente Unicam :heart:
Avatar utente
Zero87
Moderatore
Moderatore
 
Messaggio: 5835 di 5860
Iscritto il: 13/01/2008, 00:05
Località: Marche

Re: Risoluzione problemi con equazioni

Messaggioda Marco1005 » 23/07/2019, 23:21

Zero87 ha scritto:Nella prima equazione, dove hai il quadrato, il doppio prodotto tra i due termini è $-4/(x-1) = 4/(1-x)$ se poi vuoi portarlo a $1-x$.
Per il resto ho qualche dubbio sul primo denominatore, cioè su $2x^2+3x+5$ che non è scomponibile (in un'espressione con tanti prodotti mi sembra strano, ma magari si semplifica alla fine).

Nel secondo esercizio ho idea che la difficoltà sia solo nel trovare l'equazione o il sistema di equazioni giuste. Ho un'idea ma mi viene un sistema di quarto grado - non difficile, ma comunque un sistema di quarto grado con due equazioni di secondo grado. In soldoni mi viene in mente di indicare con $x$ gli amici e con $y$ il costo pro-capite per ognuno di loro...

Per il terzo, anche se sono scarso in geometria, posso comunque dirti che il testo ti dà una mano nel dirti come assegnare le incognite
Marco1005 ha scritto:il lato piccolo è 9/14 di quello grande

questo è un suggerimento e l'altro è
e la somma del lato piccolo e grande supera di 49 cm l’altezza.

per poi ricordare che hai a disposizione il dato dell'area da usare.


Ci si ritrova anche qua :-D tieni monitorato perché tra un po' arriverò anche con i dubbi sugli esponenziali risolvibili con i logaritmi 8-)
Ritornando a noi, per il primo esercizio hai ragione, invertendo il segno posso utilizzare un denominatore comune, per il problema del denominatore irriducibile ho le tue stesse perplessità, il delta è negativo e quindi non posso scomporlo in nessun modo (atipico per esercizi di questo tipo).
Per il problema degli ombrelloni avevo pensato anch'io ad utilizzare due incognite , ma non saprei come impostare un eventuale sistema ammesso che ce ne sia bisogno!
Per il terzo esercizio, io so che il lato piccolo è $ 9/14 $ della base grande, quindi la base grande è $ 14/14 $ .
A questo punto, se base piccola + base grande sono superiori di 49 cm all'altezza allora $ 23/14x-49 $ è uguale all'altezza. Successivamente dovrei usare la formula inversa con l'area ma non riesco a ritrovarmi proprio con questi conti!
Marco1005
New Member
New Member
 
Messaggio: 53 di 88
Iscritto il: 03/04/2019, 22:12

Re: Risoluzione problemi con equazioni

Messaggioda superpippone » 24/07/2019, 12:32

Il secondo è molto semplice.
Chiamo $n$ il numero di amici, e $x$ la somma da pagare.

Ho: $1.400/n=x$ e $1.400/(n-5)=x+5$

Faccio la sostituzione ed ottengo: $1.400/(n-5)=1.400/n+5$
Avatar utente
superpippone
Senior Member
Senior Member
 
Messaggio: 1917 di 1925
Iscritto il: 03/02/2011, 15:20
Località: TRIESTE

Re: Risoluzione problemi con equazioni

Messaggioda superpippone » 24/07/2019, 13:21

Chiamo $x$ la base maggiore: $(23/14x*(23/14x-49))/2=690$
Avatar utente
superpippone
Senior Member
Senior Member
 
Messaggio: 1918 di 1925
Iscritto il: 03/02/2011, 15:20
Località: TRIESTE

Re: Risoluzione problemi con equazioni

Messaggioda Zero87 » 24/07/2019, 14:49

Mi ha anticipato @superpippone - che saluto :D - però avrei fatto esattamente come lui... tranne che invece di $x$ e $n$ avrei chiamato $x$ e $y$ per il secondo, ma siamo lì.
Per il primo non ho ora carta e penna con me per svolgere l'esercizio e il mio dubbio è il tuo
Marco1005 ha scritto:per il problema del denominatore irriducibile ho le tue stesse perplessità, il delta è negativo e quindi non posso scomporlo in nessun modo (atipico per esercizi di questo tipo).

però si possono pur sempre svolgere i calcoli, magari qualcosa si semplifica.
#ilfuturononcrolla
Ex studente Unicam :heart:
Avatar utente
Zero87
Moderatore
Moderatore
 
Messaggio: 5838 di 5860
Iscritto il: 13/01/2008, 00:05
Località: Marche

Re: Risoluzione problemi con equazioni

Messaggioda Marco1005 » 24/07/2019, 20:16

superpippone ha scritto:Chiamo $x$ la base maggiore: $(23/14x*(23/14x-49))/2=690$

Grazie per la risposta, ho fatto il tuo stesso identico calcolo ma alla fine mi risulta $ 529/98x^2-161=1380 $ e qui poi mi perdo perché mi vengono dei numeri astronomici!!
Marco1005
New Member
New Member
 
Messaggio: 55 di 88
Iscritto il: 03/04/2019, 22:12

Re: Risoluzione problemi con equazioni

Messaggioda Marco1005 » 24/07/2019, 20:26

superpippone ha scritto:Il secondo è molto semplice.
Chiamo $n$ il numero di amici, e $x$ la somma da pagare.

Ho: $1.400/n=x$ e $1.400/(n-5)=x+5$

Faccio la sostituzione ed ottengo: $1.400/(n-5)=1.400/n+5$


Grazie mille anche per questa risposta! Questo calcolo l'ho fatto anch'io stamattina, metto a sistema $ xy=1400 $ con $ 1400/(x-5)=y+5 $ però dai calcoli non mi viene! Forse ho sbagliato qualche calcolo perché l'impostazione mi sembra corretta!
Marco1005
New Member
New Member
 
Messaggio: 56 di 88
Iscritto il: 03/04/2019, 22:12

Re: Risoluzione problemi con equazioni

Messaggioda Marco1005 » 24/07/2019, 20:28

Zero87 ha scritto:Mi ha anticipato @superpippone - che saluto :D - però avrei fatto esattamente come lui... tranne che invece di $x$ e $n$ avrei chiamato $x$ e $y$ per il secondo, ma siamo lì.
Per il primo non ho ora carta e penna con me per svolgere l'esercizio e il mio dubbio è il tuo
Marco1005 ha scritto:per il problema del denominatore irriducibile ho le tue stesse perplessità, il delta è negativo e quindi non posso scomporlo in nessun modo (atipico per esercizi di questo tipo).

però si possono pur sempre svolgere i calcoli, magari qualcosa si semplifica.

Per il primo esercizio ho provato a svolgere i calcoli ma si riduceva ben poco, mi sono fermato quindi a metà strada ,al massimo posso provare a mettere i risultati in un excel per verificare che almeno la soluzione sia corretta perché se è sbagliato il libro ci perdiamo tutti del tempo per nulla :?
Marco1005
New Member
New Member
 
Messaggio: 57 di 88
Iscritto il: 03/04/2019, 22:12

Re: Risoluzione problemi con equazioni

Messaggioda giammaria » 25/07/2019, 09:16

Per il primo esercizio, è giusta l'intuizione che il testo sia sbagliato. Senza scomodare Excel, proviamo a sostituirvi la soluzione $x=0$; troviamo

$-2/5*(-1-1)+(2+1)^2-(-3)=0" "$ che è falso.
- Indicando i metri con m e i centimetri con cm, si ha m=100 cm. Quindi 5 centimetri equivalgono a metri m=100*5=500.
- E' disonesto che un disonesto si comporti in modo onesto (R. Powell)
giammaria
Cannot live without
Cannot live without
 
Messaggio: 5085 di 5097
Iscritto il: 29/12/2008, 23:19
Località: provincia di Asti

Prossimo

Torna a Secondaria II grado

Chi c’è in linea

Visitano il forum: Nessuno e 7 ospiti