Norma di operatore in L^2 ([0,1]x[0,1])

Messaggioda jacques_leen » 17/09/2019, 17:47

ciao a tutti... avrei bisogno di qualcuno che verificasse che il modo in cui ho risolto questo esercizio è corretto.

la richiesta è la seguente: Dato $ L^2(Q)$ con $Q = [0,1] \times [0,1]$ e l'operatore definito da
\[ Af(x,y) = (x+iy) f(x,y) \]
devo mostrare che $A$ è limitato, e calcolarne la norma.

per il primo punto ho fatto come segue:

$(\int_{Q} |(x+iy)f(x,y)|^2 dx dy )^{1/2} \leq (Sup_{Q} |x+iy| )^{1/2}\int_{Q} |f(x,y)|^2 dx dy )^{1/2} \leq \sqrt{2} ||f||_{2}$
che dimostra la limtatezza.

Per individuare la norma dell'operatore, è corretto prendere una funzione in $L^2(Q)$ e far vedere che per quella funzione $||Af(x,y)||$ è proprio uguale alla stima data dalla limitatezza? Se così fosse ho che $f(x,y) = 1$ è perfettamente rispondente ai requisiti e dimostra che $||A||_{2} = \sqrt{2}$
jacques_leen
Starting Member
Starting Member
 
Messaggio: 22 di 23
Iscritto il: 27/12/2017, 11:34

Re: Norma di operatore in L^2 ([0,1]x[0,1])

Messaggioda gugo82 » 17/09/2019, 19:13

Sì.

Ma hai saltato un’esponente $2$ nell’argomento del $text(sup)$.
Sono sempre stato, e mi ritengo ancora un dilettante. Cioè una persona che si diletta, che cerca sempre di provare piacere e di regalare il piacere agli altri, che scopre ogni volta quello che fa come se fosse la prima volta. (Freak Antoni)
Avatar utente
gugo82
Moderatore globale
Moderatore globale
 
Messaggio: 22361 di 22591
Iscritto il: 13/10/2007, 00:58
Località: Napoli

Re: Norma di operatore in L^2 ([0,1]x[0,1])

Messaggioda feddy » 17/09/2019, 21:11

Nota che per definizione di norma operatoriale, essa è la più piccola costante che realizza la limitatezza dell'operatore.
Avatar utente
feddy
Advanced Member
Advanced Member
 
Messaggio: 2577 di 2605
Iscritto il: 26/06/2016, 01:25
Località: Austria

Re: Norma di operatore in L^2 ([0,1]x[0,1])

Messaggioda jacques_leen » 18/09/2019, 10:55

gugo82 ha scritto:Ma hai saltato un’esponente $2$ nell’argomento del $text(sup)$.


errore di battitura grazie della segnalazione comunque

feddy ha scritto:Nota che per definizione di norma operatoriale, essa è la più piccola costante che realizza la limitatezza dell'operatore.


Di conseguenza se per una funzione ho che una certa costante $C$, la quale sicuramente verifica la limitatezza, mi consente anche di scrivere che $||Af|| = C$ quella costante (diviso la norma della funzione) è la norma dell'operatore.

Se l'inferenza è corretta per quanto mi riguarda si può anche chiudere il topic. Grazie mille
jacques_leen
Starting Member
Starting Member
 
Messaggio: 23 di 23
Iscritto il: 27/12/2017, 11:34


Torna a Analisi superiore

Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti